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Abstract

In this paper we analyse the asymptotic covariance of models of causal single-input single-output linear time invariant systems.
Expressions for the asymptotic (co)variance of system properties estimated using the prediction error method are derived.
These expressions delineate the impacts of model structure, model order, true system dynamics, and experimental conditions. A
connection to results on frequency function estimation is established. Also, simple model structure independent upper bounds
are derived. Explicit variance expressions and bounds are provided for common system properties such as impulse response
coefficients and non-minimum phase zeros. As an illustration of the insights the expressions provide, they are used to derive
conditions on the input spectrum which make the asymptotic variance of non-minimum phase zero estimates independent of
the model order and model structure.

1 Introduction

In system identification, as in all types of modeling, it
is important to be able to assess the model error. Dif-
ferent assumptions on the system and the noise lead to
different ways to quantify the model error, see Ninness
and Goodwin (1995, Chapter 5). Assuming the noise to
be stochastic and that the system can be described by a
model within the used model set leads to error quantifi-
cation using confidence ellipsoids based on the asymp-
totic covariance matrix of the parameter estimates
(Ljung; 1999). Also techniques for non-asymptotic con-
fidence regions have been developed (Campi and Weyer;
2005, 2010; Douma and Van den Hof; 2006; Csáji et al.;
2012b,a; Kolumbán et al.; 2015). In this contribution,
though, we will focus on the traditional asymptotic
covariance matrix which in many cases give reliable
information of the model error (Garatti et al.; 2004).

We will consider prediction error identification of causal
single-input single-output (SISO) finite dimensional lin-
ear time invariant (LTI) systems. The unknown system
parameters will be denoted by θ = [θ1, · · · , θn]T ∈ Rn,
with θo denoting the true value and we will assume that
the true system is in the model class. We will assume
that (see (Ljung; 1999) for exact conditions) the param-
eter estimate θ̂N ∈ Rn has the property that the (nor-
malized) model error

√
N(θ̂N − θo) becomes normally

distributed as the sample size N of the data set grows

? This work was supported in part by the Swedish Research
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to infinity:

√
N
(
θ̂N − θo

)
∈ AsN

(
0,AsCov θ̂N

)
. (1)

The asymptotic covariance matrix AsCov θ̂N of the limit
distribution is a measure of the model accuracy. This
is reinforced by that, under mild additional conditions
(Ljung; 1999),

lim
N→∞

N ·E
[
(θ̂N −Eθ̂N )(θ̂N −Eθ̂N )T

]
= AsCov θ̂N . (2)

Under the assumptions above

AsCov θ̂N =

[
1

2π

∫ π

−π
Ψ(ejω)Ψ∗(ejω)dω

]−1

, (3)

where Ψ is the gradient of the one-step ahead output pre-
dictor and where superscript ∗ denotes complex conju-
gate transpose. We will use 〈Ψ, Ψ〉 to denote the integral
on the right-hand side of (3) in the following. However,
our interest will not primarily be the model parameters
θ themselves but some “system theoretic” quantity. We
will let such a quantity be represented by a differentiable
function J : Rn → C1×p. Given an estimate θ̂N of θo, a
natural estimate of J(θo) is J(θ̂N ) with asymptotic co-
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variance 1

AsCov J(θ̂N )

:= lim
N→∞

N ·E
[
(J(θ̂N )− J(θo))∗(J(θ̂N )− J(θo))

]
.

Using a Taylor series expansion around J(θo) and (3), it
can be shown (Ljung; 1999), that

AsCov J(θ̂N ) = Λ∗ [〈Ψ, Ψ〉]−1
Λ,

where

Λ := J ′(θo) ∈ Cn×p. (4)

We shall be slightly more general and allow for 〈Ψ, Ψ〉 to
be singular, in which case

AsCov J(θ̂N ) = Λ∗ [〈Ψ, Ψ〉]† Λ. (5)

The motivation for using the Moore-Penrose pseudo-
inverse [〈Ψ, Ψ〉]† stems from that this gives the correct
covariance for properties that are uniquely defined by
the data even if the parameter estimate is non-unique,
see Mårtensson and Hjalmarsson (2011, Section I) and
Hjalmarsson (2009); Stoica and Marzetta (2001) for de-
tails.

Our main assumption is that prediction error identifica-
tion results in an asymptotic covariance AsCov J(θ̂N )
of the quantity of interest J given by (5). We refer to
Ljung (1999) for exact conditions for when this holds.

When the model structure, the true system and the ex-
perimental conditions are known, it is straightforward
to compute (5) numerically. However, such a procedure
typically reveals little in terms of how system proper-
ties and design variables (model order, model structure,
experimental conditions etc.), influence the asymptotic
covariance. In Mårtensson and Hjalmarsson (2011) (see
also Mårtensson and Hjalmarsson (2009)), a geometric
approach is used to re-express (5) in a formmore tangible
for interpretation. The use of the technique is illustrated
by analyzing the impact that system complexity, addi-
tional inputs and additional sensors have on the asymp-
totic covariance. Our work is based on this idea and we
will derive expressions for (5) for a class of system prop-
erties such as frequency response, impulse response co-
efficients, poles and zeros, and system norms. This tech-
nique has been applied to various settings, e.g., cascade
systems (Everitt et al.; 2013), single-input multi-output
systems (Ramazi et al.; 2014), error-in-variables iden-
tification (Hjalmarsson et al.; 2011), identification for
minimum variance control (Mårtensson et al.; 2011).

1 This definition is slightly non-standard in that the second
factor is usually conjugated. For the standard definition, all
results in the paper have to be transposed.

A case that has attracted significant interest in the
past is the variance of frequency function estimates
G(ejω, θ̂N ). For the prediction error method it was
shown in Ljung (1985) that

lim
m→∞

1

m
AsCovG(ejω, θ̂N ) =

Φv(e
jω)

Φu(ejω)
, (6)

wherem is the model order and Φu and Φv are the spec-
tral densities of the input signal and noise, respectively.
This simple and elegant expression, which is valid for
open loop identification, revealed that for large model
orders, the accuracy of the frequency function estimate
does not depend on the model structure or the number
of estimated parameters, but only the model order m
(which may be different from the number of estimated
parameters). The results suggests that the covariance
grows linearly with the model order. Furthermore, it
shows that the accuracy of the frequency function esti-
mate at a particular frequency only depends on the input
and noise spectrum at that particular frequency. Vari-
ous refinements can be found in Hildebrand and Gev-
ers (2004); Hjalmarsson and Ninness (2006); Ninness
and Hjalmarsson (2004); Xie and Ljung (2001, 2004);
Wahlberg et al. (2012).

The frequency function result in Ljung (1985) also cov-
ered closed loop identification using input and output
measurements as data, and was extended to some alter-
native closed loop identification methods in Gevers et al.
(2001). Covariance expressions for finite model orders
were presented in Ninness and Hjalmarsson (2005). The
asymptotic covariance of the parameter estimates for
Box-Jenkins models were studied in Forssell and Ljung
(1999) for a range of different closed loop identification
methods. Additional contributions to quantify frequency
response errors are Bombois et al. (2005); Campi and
Weyer (2005); Schoukens et al. (2006).

Parallel to the interest in the accuracy of frequency re-
sponse estimates, there has been a series of results re-
garding the accuracy of estimated non-minimum phase
(NMP) zeros and unstable poles, the interest arising
due to the importance of such zeros and poles in con-
trol. For poles and zeros of amplitude larger than one,
the main conclusion is that the asymptotic variance ap-
proaches a finite limit as themodel order tends to infinity
(Lindqvist; 2001; Mårtensson and Hjalmarsson; 2009).
This is remarkable compared to the linear growth for fre-
quency function estimates. A related and very interest-
ing contribution is the paper Gevers et al. (2009) where
conditions for the minimum degree of richness of the ex-
citation required for the information matrix 〈Ψ, Ψ〉 to be
non-singular are established.

Promising methods based on hypothesis testing are also
emerging, which, under very mild assumptions on the
noise distribution, provide non-asymptotic confidence
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regions (Csáji et al.; 2012b,a; Kolumbán et al.; 2015). In
Csáji et al. (2012a,b), the noise terms are assumed in-
dependent and symmetrically distributed around zero,
and in Kolumbán et al. (2015) it is shown that the sym-
metry requirement may be replaced by exchangeability.

Contributions and outline

As pointed out in Mårtensson and Hjalmarsson (2011),
the geometric approach has its origin in Ninness and
Hjalmarsson (2004), where exact expressions for the
asymptotic variance of frequency function estimates
for LTI models were derived using the theory of repro-
ducing kernels, a theory which is based on orthogonal
projections. Our contribution to the characterization
of the variance error for estimates of LTI systems can
be seen as an extension of that work to general system
properties J , and thus extends Mårtensson and Hjal-
marsson (2011), using new techniques which deepens
the geometrical interpretation of (5). As a result, our
contribution provides an alternative system theoretic
interpretation of the results in Ninness and Hjalmarsson
(2004), see Section 6.1, thus furthering the understand-
ing of frequency function estimation.

More precisely, the contributions of this paper are:

i) Section 3.2: Re-parametrization formulae. We use
an orthonormal-basis-parametrization of the sys-
tem model and the quantity of interest in order to
re-express (5) (Lemma 2 and Lemma 3).

ii) Sections 4 and 5: A general characterization of (5)
for Linear Time Invariant systems. Here we pro-
vide general formulas for (5), valid for different ex-
perimental conditions and model parametrizations,
based on the re-parametrization mentioned above
(Theorem 1 and Theorem 4).

iii) Model structure independent upper bounds for
(5). At present there are surprisingly few rules
of thumbs available regarding model quality in
system identification; the expression (6) for the
frequency function estimate and some similar vari-
ance expressions for pole/zero estimates are sole
exceptions. Thus, determining a suitable experi-
ment length and excitation in order to achieve a
certain accuracy of, for example, an impulse re-
sponse coefficient or an estimate of the L2 gain of
the system, requires extensive calculations based
on (5). A spin-off of our new expression for (5) is
that it is easy to provide simple model structure
independent upper bounds for (5) (Theorem 4).
We hope this to be of value to practitioners.

iv) Section 6: Expressions for the asymptotic covari-
ance for some properties of LTI systems.We provide
expressions and upper bounds for the asymptotic
variance of estimated frequency functions, impulse
response coefficients, L2-gains and NMP-zeros.

2 Technical preliminaries

This section introduces the notation and presents the
mathematical tools that are necessary for deriving and
understanding the results of this paper.

2.1 Notation

The conjugate transpose of a complex-valuedmatrixZ ∈
Cn×m is denoted Z∗. For invertible matrices, Z−∗ :=
(Z−1)∗. Let D denote the unit disc: {z : |z| < 1}, E the
exterior of the unit disc including infinity: {z : |z| > 1},
and T the unit circle: {z : |z| = 1}. For functions f : C→
Cn×m, f∗(z) := (f(z))∗ denotes the conjugate transpose
of f(z). The matrix inverse of f(z), if it exists, is denoted
f−1(z) := (f(z))−1. Similarly, f−∗(z) := (f(z))−∗. In
what follows, we will mainly be concerned with func-
tions f : T → Cn×m that arise as the restrictions of
f : C → Cn×m to the domain z = ejω, ω ∈ [0, 2π]. This
paper will alternate between the notation f(ω), f(ejω),
and f(z) as is convenient. We will consider vector valued
complex functions as row vectors and the inner prod-
uct of two such functions f, g : T → C1×m is defined as
〈f, g〉 := 1

2π

∫ π
−πf(ω)g∗(ω)dω. When f and g are matrix-

valued functions, we will still use the notation 〈f, g〉
to denote 1

2π

∫ π
−πf(ω)g∗(ω)dω whenever the dimensions

of f and g are compatible. In particular, 〈f, f〉 is the
Gramian matrix of the rows of f . WhenW : T→ Cm×m
is such thatW (z) is a positive definite hermitian matrix
for all z, the LW2 -norm of f : T → Cn×m is given by
‖f‖W =

√
Tr 〈fW, f〉 where Tr denotes the Trace op-

erator. When W ≡ I (the identity), we write ‖f‖ and
denote this the L2-norm of f . The space Ln×m2 consists
of all functions f : T → Cn×m, such that ‖f‖ < ∞.
When n = 1, the notation is simplified to Lm2 . For
f : T → Cn×m, fi : T → C1×m denotes the ith row
of f . Hm2 is defined as the Lm2 -functions that are an-
alytic in E. If Ψ ∈ Ln×m2 for some positive integers n
and m, then SΨ denotes the span of the rows of Ψ . For
f ∈ L2

p×m and S ⊆ Lm2 , PS{f} denotes the orthog-
onal projection of f onto S, meaning that the rows of
PS{f} are the corresponding rows of f projected on S.
For a differentiable function f : Rn → C1×p, f ′(xo) is a
n× p matrix with ∂fj(x)

∂xi

∣∣
x=xo

as ijth entry, the partial

derivative ∂f(x̄)
∂xi

is defined analogously. A† denotes the
Moore-Penrose pseudo-inverse of A.

2.2 Geometric tools for variance analysis

Our results are based on Hjalmarsson and Mårtensson
(2011), which presents an expression for the asymptotic
covariance (5). The main result is restated here for com-
pleteness.

Lemma 1 Let Ψ ∈ Ln×m2 and Λ ∈ Cn×p. Suppose that
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Figure 1. Block diagram of SISO LTI system with output
feedback

γ ∈ Lp×m2 is such that

Λ = 〈Ψ, γ〉. (7)

Then

Λ∗〈Ψ, Ψ〉†Λ = 〈PSΨ{γ},PSΨ{γ}〉 , (8)

where SΨ is the row span of Ψ .

Proof The proof can be found in Hjalmarsson and
Mårtensson (2011, Theorem II.5). �

With Λ as in (4), Lemma 1 gives an expression for the
asymptotic covariance (5):

AsCov J(θ̂N ) = 〈PSΨ{γ},PSΨ{γ}〉 . (9)

There are many functions γ for which (7) holds, so there
is a large degree of freedom in the choice of γ when ana-
lyzing the expression (9). In Hjalmarsson and Mårtens-
son (2011, Lemma II.8) it is shown that all solutions
γ ∈ Lp×m2 to the equation Λ = 〈Ψ, γ〉 are given by

γ = Λ∗〈Ψ, Ψ〉†Ψ + s⊥, (10)

where s⊥ is any Lp×m2 -function orthogonal to SΨ . We
will explore this degree of freedom in the next section,
where a re-parametrization of J(θ) is used to find an
expression for a γ that fulfills the condition (7) when
Λ = J ′(θo), cf. (4).

3 SISO LTI systems

In this section we present the system and model assump-
tions, and provide the reparametrization formulae that
can be used to characterize the covariance of specific sys-
tem properties.

3.1 System and model assumptions

Throughout the paper we will assume that the true sys-
tem is given by a causal finite dimensional SISO LTI sys-
temGo(q) (q is the forward shift operator) as depicted in
Figure 1, where ut and yt represent the measured input

and output, respectively, and where et and wt are uncor-
related zero mean white noise sequences with variances
λo and 1, respectively. The causal finite dimensional LTI
filter R represents a stable minimum phase spectral fac-
tor of the reference signal rt, and Ho is an inversely sta-
ble finite dimensional LTI filter that is normalized to be
monic, i.e., limz→∞Ho(z) = 1. The system Go includes
at least one unit time delay, so that the feedback loop
is well defined, and we also assume the entire system to
be internally stabilized by the causal finite dimensional
LTI controllerK. Furthermore, we will assume that nei-
ther Go nor K have poles on the unit circle. The system
is said to be operating in open loop when K = 0. Next,
we introduce a quite general family of model structures
that will be covered.

The system is modeled by

yt = T (q, θ)χt, χt = [ut, et]
T, (11)

where T (q, θ) = [G(q, θ), H(q, θ)] is a causal finite di-
mensional LTI model of the system and the noise dy-
namics, parameterized by the vector θ ∈ Rn. It is as-
sumed that the model parametrization is such that the
true system is in the model set, that is, there is a, not
necessarily unique, parameter θo such that

Go(q) = G(q, θo), Ho(q) = H(q, θo). (12)

The model T (z, θ) is continuously differentiable with
respect to θ in a neighborhood of θo. The type of model
described above includes all standard black-box model
structures such as ARMAX, output error and Box-
Jenkins.

Now, let Φv and Φχ denote the spectrum of vt and χt,
respectively, and introduce the spectrum of the signal-
to-noise ratio

Φsnr(z) = Φχ(z)/Φv(z) = Rsnr(z)R∗snr(z−∗) (13)

where the spectral factor Rsnr is given by

Rsnr(z) = Rχ(z)R−1
v (z), (14)

where Rv =
√
λoHo is a minimum phase spectral fac-

tor of the noise spectrum Φv and where Rχ is a stable
spectral factor of Φχ, i.e.

Rχ :=

[
SoR −KSoHo

0 1

] [
1 0
0
√
λo

]
, (15)

where So = 1/(1 + KGo) is the closed loop sensitivity
function. It is straightforward to show that the predictor
gradient, normalized by

√
λo, is given by

Ψ(z) = T ′(z, θo)Rsnr(z) ∈ Ln×2
2 , (16)
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where T ′(z, θ) =
[
∂G(z,θ)
∂θ

∂H(z,θ)
∂θ

]
.

We will assume that the model parametrization is such
that Ψ is stable. The stability assumption on the closed
loop system and the assumptions on Go and K imply
that Rsnr(z) and its inverse are real rational functions
without poles on the unit circle and hence are L2×2

2 func-
tions, as well as bounded on the unit circle.

3.2 Utilizing alternative model parametrizations

In this section we will derive an expression for the asymp-
totic covariance (5) of the estimate J(θ̂N ) of an arbi-
trary differentiable quantity J : Rn → C1×p when Ψ in
(5) is given by (16). While this can be done on a case by
case basis for different model structures using Lemma 1,
we will instead use an orthonormal-basis representation,
(e.g., impulse response coefficients), as an intermediate
parametrization in order to obtain an expression that is
valid regardless of the model structure.

With the aim of representing the transfer functions in
T = [G H] separately, take {Gk(z)}∞k=1 and {Hk(z)}∞k=1
to be two sequences of orthonormal L2-functions ana-
lytic on the unit circle. For k = 1, 2, . . . define the or-
thonormal functions 2

T2k−1(z) = [Gk(z) 0], T2k(z) = [0 Hk(z)]. (17)

With τ = [τ1 τ2 · · · ], any transfer function T = [G H]
satisfying the assumptions in Section 3.1 can be repre-
sented by

T (z) = [G(z) H(z)] =

∞∑
k=1

τk Tk(z) (18)

on the unit circle for suitable choices of {Gk(z)}∞k=1 and
{Hk(z)}∞k=1. We will assume that the sum on the right
hand side of (18) has a region of convergence that in-
cludes the unit circle. For an asymptotically stable sys-
tem G(z) we can for example use the impulse response
representation G(z) =

∑∞
k=1 gkz

−k (cf. the single-sided
z-transform). If

∑∞
k=1 |gk| <∞, the sum converges uni-

formly to G(z) on the unit circle (?). A more general
representation is via the Takenaka-Malmquist functions

Bk(z) :=

√
1− |ξk|2
z − ξk

φk−1(z), k = 1, 2, . . . (19)

φk(z) :=

k∏
l=1

1− ξlz
z − ξl

, φ0(z) := 1, (20)

2 This sequence that alternates between Gk and Hk is a
construction that enables us to express T with one infinite
sum in (18).

which are dense in H2, if
∑∞
k=1(1 − |ξk|) = ∞ for the

set of pre-specified poles {ξk} which are not allowed to
lie on the unit circle (Ninness and Gustafsson; 1997). It
is worth noticing that also unstable G(z) can be repre-
sented by (18) on the unit circle, for example by a Lau-
rent series expansion (cf. the double-sided z-transform).
Since G(z) is analytic on an annulus around the unit
circle we can always find a series

∑∞
k=−∞ akz

−k that
converges uniformly to G(z) on the unit circle. Note
that also the Takenaka-Malmquist basis functions, which
form a basis forH2, can be extended to a basis for L2 by
appending a function Ak(z) := 1

zBk(1/z) for each basis
function Bk(z).

By assumption, the elements of T (z, θ) are finite di-
mensional real rational functions with no poles on the
unit circle, i.e., they can be written as Bi(z, θ)/Ai(z, θ),
i = 1, 2 for some polynomials Bi and Ai with real coef-
ficients where Ai(z, θ), i = 1, 2, do not have any roots
on the unit circle. Thus T (z, θ) belongs to L2

2 and hence
τk(θ) can be defined through the inverse transformation

τk(θ) := 〈T (z, θ), Tk(z)〉. (21)

Then the model (11), which is parameterized by the vec-
tor θ, can also be expressed through the parametrization
(18):

T (z, θ) =

∞∑
k=1

τk(θ)Tk(z). (22)

We will denote by τ the set {τk}∞k=1, by τ(θ) the set
{τk(θ)}∞k=1, and by τo the set {τk(θo)}∞k=1. Whenever
we use infinite sums like in (22) we will assume that the
sum converges on an annulus around the unit circle.

Lemma 2 Under the assumptions in Section 3.1,
τk(θ), k = 1, . . . are differentiable at θo and

T ′(z, θo) =

∞∑
k=1

τ ′k(θo)Tk(z) ∈ Ln×2
2 . (23)

Proof By assumption T (z, θ) is continuously differen-
tiable with respect to θ in a neighborhood of θo and hence
the right hand side of (21) is differentiable at θo under
the integral sign (Rudin; 1976, Theorem 9.42). Thus

τ ′k(θo) = 〈T ′(z, θo), Tk(z)〉, k = 1, . . . . (24)

Now the elements of T ′(z, θo) are given by

B′i(z, θ
o)

Ai(z, θo)
− Bi(z, θ

o)A′i(z, θ
o)

A2
i (z, θ

o)
, i = 1, 2 (25)

and T ′(z, θo) ∈ Ln×2
2 since by assumption Ai(z, θo), i =

1, 2 does not have any roots on the unit circle. Therefore,
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(23) follows from the inverse transformation of (24). We
remark that {Tk} does not have to be complete. It is only
required that T (z, θ) is representable in this orthonormal
system. �

Next we will link the parameter set τ to the quantity of
interest J . Let J : Rn → C1×p be differentiable, with
J(θ) defined by

J(θ) = Jτ (τ(θ)) (26)

for some function Jτ .

Assumption 1 The functions J and Jτ in (26) are such
that

a) the partial derivatives of Jτ with respect to τk exist
at θo and satisfy

∇Jτ (z) :=

∞∑
k=1

(
∂Jτ (τo)

∂τk

)∗
Tk(z) ∈ Lp×2

2 , (27)

b) the following chain rule applies:

J ′(θo) =

∞∑
k=1

τ ′k(θo)
∂Jτ (τ(θo))

∂τk
. (28)

Lemma 3 Under the assumptions in Section 3.1 and
Assumption 1 it holds that

J ′(θo) = 〈Ψ,∇JτR−∗snr〉 (29)

Proof First notice that, from (16),

〈Ψ,∇JτR−∗snr〉 = 〈ΨR−1
snr,∇Jτ 〉 = 〈T ′(z, θo),∇Jτ 〉.

(30)

Due to Lemma 2, (27) and the orthonormality of {Tk}
it follows that

〈Ψ,∇JτR−∗snr〉 =

∞∑
k=1

τ ′k(θo)
∂Jτ (τ(θo))

∂τk
, (31)

which, according to assumption (28), equals J ′(θo). �

Thus, Lemma 3 gives an explicit expression of a γ in
the family (10), namely γ = ∇JτR−∗snr. Moreover, this
particular choice of γ does not depend on the model
structure used in the estimation, however, γ does in some
sense depend on {Tk}. In the next section we will use this
choice of γ to analyze the asymptotic covariance (9).

4 Covariance analysis for SISO LTI systems

We are now ready to state the main result of this pa-
per, which is an expression for the asymptotic covari-
ance (9) that utilizes the model structure independent
parametrization and the particular choice of γ that were
introduced in the previous section.

Theorem 1 Suppose that Jτ (τo) ∈ C1×p is estimated by
J(θ̂N ) = Jτ (τ(θ̂N )). Assume that the system and model
assumptions in Section 3.1 and Assumption 1 hold. Then

AsCov J(θ̂N )

=
〈
PSΨ

{
∇JτR−∗snr

}
,PSΨ

{
∇JτR−∗snr

}〉
(32)

Proof This result follows directly from Lemma 1 and
Lemma 3. �

There is a certain decoupling between the property of
interest J , the experimental conditions represented by
Φsnr(ejω) and model structure T (z, θ) in the expression
(32).

The property of interest enters the expression only
through the function∇Jτ which describes the sensitivity
of the property J to changes in the transfer function T .
One could interpret ∇Jτ as a Fréchet derivative (Luen-
berger; 1969) by viewing J as a functional of the system
transfer function, i.e., J = f(T (·)), or, if we include the
θ-dependence J(θ) = f(T (·, θ)). For small changes δθ
we have δJ(θ) = [δθ]TJ ′(θ) and δT (z) = [δθ]TT ′(z, θ).
Similarly we have, by the Riesz representation theorem
(Kreyszig; 1978), that δf = 〈δT, y〉 for some y ∈ Lp×2

2
where y should be interpreted as the “functional deriva-
tive” y =

δf

δT
. Now consider

δJ = δf ◦ δT = [δθ]T〈T ′, y〉 = [δθ]T〈Ψ, yR−∗snr〉

and recall that by definition

δJ = [δθ]TJ ′(θ) = [δθ]T〈Ψ, γ〉 = [δθ]T〈Ψ,∇JτR−∗snr〉.

By comparing these two expressions it can be seen that

∇Jτ = y =
δf

δT
. Thus, when J is viewed as a functional

on T , ∇Jτ has the interpretation of a Fréchet derivative
of J with respect to T .

∇Jτ is weighted by the inverse of R−∗snr(z−∗) where Rsnr
is a spectral factor of Φsnr(z). Thus, Φ−1

snr must be small
in the directions where ∇Jτ is large in order to produce
an accurate estimate of J . This ratio is known from the
expression (6) and can be interpreted as the frequency-
wise noise to signal ratio.

The space SΨ is the span of the rows of

Ψ(z) = T ′(z, θo) R−1
snr(z) = T ′(z, θo)Rsnr(z).
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The structure of this space is thus to a large extent de-
termined by the model structure (through T ′). However,
the true system also determines T ′(z, θo) (through θo)
and together with the experimental conditions also acts
as translation through the factor Rsnr(z).

Furthermore, the projection only depends on the span
of Ψ , i.e., the subspace SΨ . From these two observations
it follows that all model structures whose predictor gra-
dients span the same space will have exactly the same
asymptotic covariance.

Example 1 Order n Laguerre models (Wahlberg; 1991)
with poles in ξ will have the same asymptotic variance
as fixed denominator models of order n with a pole of
multiple n at ξ, since the span of Ψ is the same.

Example 2 The asymptotic covariance of model struc-
tures that are scaled by a constant factor remains the
same, if the model structure is such that a scaling of the
model structure results in a linear change in the param-
eters i.e., replacing T (z, θ) with T̃ (z, θ̃) = αT (z, θ), re-
sults θ̃ = βθ (e.g. model structures that are linear in the
parameters). Again, since both the function to be pro-
jected and the subspace do not change.

On the other hand if the experimental conditions are
changed so that the signal to noise ratio Rsnr is scaled
by a factor β, then since SΨ will remain the same (even
though Ψ is re-scaled), the asymptotic variance is scaled
by 1/β2.

The result in Theorem 1 is basically applicable when-
ever the predictor gradient is given by (16) and thus
very general. The expression (32) is an exact represen-
tation of the asymptotic variance (5) which is valid for
a wide range of LTI model structures, including com-
monly used structures such as ARMAX, output-error
and Box-Jenkins, and it can be used for both open loop
and closed loop identification. Furthermore it expresses
the variance of any property of the estimated model,
provided this property can be expressed as a differen-
tiable function of the (impulse response) coefficients τk
satisfying the conditions in the theorem.

Theorem 1 illustrates the flexibility offered by (10). The
function ∇Jτ (z) R−∗snr(z−∗) is a function in the set (10)
of functions γ that can be used in Lemma 1 such that
〈Ψ, γ〉 is the sensitivity of the quantity of interest with
respect to the model parameters (this is the essence of
Theorem 1). However, this function is chosen with care
so that it can be used regardless of the model struc-
ture (which determines T ′(z, θo)). It is due to this that
the decoupling between the function of interest and the
model structure, discussed above, is obtained. This also
opens up the possibility to derive upper bounds that are
model structure independent, which will be presented in
the next section. This is one of the features offered by

the geometric approach employed in this paper. The ex-
istence of such γ was previously discussed in Hjalmars-
son and Mårtensson (2011), however, the explicit con-
struction∇Jτ (z) R−∗snr(z−∗) employed here is completely
novel. For further discussion on the geometric approach
we refer to Hjalmarsson and Mårtensson (2011).

4.1 Upper bounds

One advantage with the new expression (32) is that it
is easy to provide simple, model structure independent,
bounds for (9). For any closed subspace Ω such that
SΨ ⊆ Ω we can get an upper bound of (9) by project-
ing onto Ω instead of SΨ (Hjalmarsson and Mårtensson;
2011, Lemma II.6). The bounds presented in this paper
are obtained by projection onto H2

2 or L2
2. All variables

belong toL2
2 by assumption and then the projection onto

L2
2 always equals the variable itself.

Theorem 2 Let the conditions of Theorem 1 be fulfilled.
An upper bound of the asymptotic covariance of J(θ̂N ) is
then given by

AsCov J(θ̂N ) ≤ 〈∇JτΦ−1
snr,∇Jτ 〉. (33)

Proof The result is obtained by projection onto L2
2 in-

stead of SΨ in (32), cf. Hjalmarsson and Mårtensson
(2011, Lemma II.6). �

The bounds in Theorem 2 typically (but not always) de-
pend on the true underlying system through ∇Jτ and
Φsnr. However, notice that they do not depend on the
model structure. This means that they are valid for any
model structure (under the model assumptions in Sec-
tion 3.1), which also means that they apply to arbitrarily
high model orders.

When we are projecting onto L2
2, i.e., when the projec-

tion is removed, the bounds derived are typically conser-
vative even as the model order increases since SΨ ⊆ H2

2
regardless of the model order and model structure, while
the function that is projected, ∇Jτ R−∗snr, typically has a
term that belongs to the complement of H2

2. This con-
servativeness will be further investigated in the next sec-
tion.

4.2 Conservativeness

The upper bounds derived in Section 4.1 aremodel struc-
ture independent and in general conservative. In this
section we will try to investigate how conservative they
are. We will proceed by deriving also a lower bound on
AsCov J(θ̂N ) in order to bound the conservativeness. To
this end, define

ηu := sup
ω
λmax {Φsnr}

ηl := inf
ω
λmin {Φsnr} , (34)
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where λmin and λmax denote the minimum and maxi-
mum eigenvalue of Φsnr, respectively.

Lemma 4 Let the conditions of Theorem 1 be fulfilled.
Bounds of the asymptotic covariance of J(θ̂N ) are then
given by

1

ηu
〈PST ′{∇Jτ} ,PST ′{∇Jτ}〉

≤ AsCov J(θ̂N )

≤ 1

ηl
〈PST ′{∇Jτ} ,PST ′{∇Jτ}〉 (35)

Proof We expand the projection in (32) and get

AsCov J(θ̂N )

= 〈∇JτR−∗snr, Ψ〉〈Ψ, Ψ〉−1〈Ψ,∇JτR−∗snr〉
= 〈∇Jτ , T ′〉〈Ψ, Ψ〉−1〈T ′,∇Jτ 〉. (36)

Then, since 〈Ψ, Ψ〉 = 〈T ′Φsnr, T
′〉, we have that

ηl〈T ′, T ′〉 ≤ 〈Ψ, Ψ〉 ≤ ηu〈T ′, T ′〉. (37)

Applying these bounds to (36) the Theorem follows. �

As we will see in Section 6, for some particular choices
of J , we have that ∇Jτ ∈ ST ′ and in those cases we can
remove the projection. Furthermore, we can expect that
ST ′ spans H2

2 when the model order increases, and since
∇Jτ ∈ H2

2, we can expect that ∇Jτ ∈ ST ′ asymptoti-
cally in the model order. In the case when ∇Jτ ∈ ST ′ ,
we have the following theorem.

Theorem 3 Let the conditions of Theorem 1 be fulfilled
and let ∇Jτ ∈ ST ′ . A lower bound of the asymptotic
covariance of J(θ̂N ) is then given by

ηl
ηu
〈∇JτΦ−1

snr,∇Jτ 〉 ≤ AsCov J(θ̂N ), (38)

where ηl and ηu are defined in (34).

Proof Similarly to (37), we also have that

〈∇JτΦ−1
snr,∇Jτ 〉 ≤

1

ηl
〈∇Jτ ,∇Jτ 〉. (39)

Thus, in the case when ∇Jτ ∈ ST ′ , combining (39) and
(35) gives the lower bound. �

Comparing Theorem 3 with Theorem 2, we see that
the only difference between the lower bound and upper
bound is the scaling factor ηl/ηu. When the spectrum
of the signal-to-noise ratio is rather flat we expect this
ratio to be closer to one, and thus expect the bound in
Theorem 2 to be less conservative.

4.3 Curse of Complexity

In this section we will compare the results based on The-
orem 1 with the asymptotic covariance expressions im-
plied by the results in Ljung (1985) that are asymptotic
in model order.

Using the orthonormality of {Tk} in the represen-
tation (18) gives that τl = 〈T, Tl〉 and hence (with
τ̃k := τk(θ̂N )− τok , T̃ (z) := T (z, θ̂N )−To(z) and with m
being the model order)

lim
m→∞

1

m
E [τ̃∗k τ̃l]

= lim
m→∞

1

m
E
[〈
Tk(z), T̃ (z)

〉〈
T̃ (ζ), Tl(ζ)

〉]
= lim
m→∞

1

m
E
[〈〈
Tk(z), T̃ ∗(ζ)T̃ (z)

〉
, Tl(ζ)

〉]
=

〈〈
Tk(z), lim

m→∞

1

m
E
[
T̃ ∗(ζ)T̃ (z)

]〉
, Tl(ζ)

〉
, (40)

assuming that the limit operation and the integration
commute. If we now use the asymptotic result

lim
m→∞

1

m
AsCov T (ejω, θ̂N ) = Φ−1

snr(ejω) (41)

derived in Ljung (1985) and another result from Ljung
(1985), namely that frequency function estimates at dif-
ferent frequencies become uncorrelated as the model or-
der m → ∞, (40) collapses to zero, which in turn sug-
gests that for any J of the type described in Theorem 1

lim
m→∞

1

m
AsCov J(θ̂N ) = 0. (42)

We have thus obtained, by direct application of the
model order asymptotic results in (Ljung; 1985) that
the asymptotic variance is of the order o(m). Note that
AsCov T (ejω, θ̂N ) grows unbounded with m as in (41),
which seems to contradict (42), but T (ejω) does not be-
long to the allowed class of functions J in Theorem 1.
This situation will be addressed later in Section 6.1.

The result (42) is considerably weaker than the upper
bound (33) derived in this paper. Thus we have shown
that, when the conditions of Theorem 1 hold, the upper
bounds derived in this paper are significantly more accu-
rate expressions for the asymptotic covariance than the
asymptotic covariance expressions implied by the results
in Ljung (1985).

In order to go from the results in Ljung (1985) and ar-
rive at something similar to (33) in Theorem 2 we must
remove the scaling factor 1/m and interpret (41) as

lim
m→∞

E
[
T̃ ∗(ξ)T̃ (z)

]
= Φ−1

snr(z)δ(z − ξ), (43)
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with δ(x) being the Dirac delta. Note that Ljung (1985)
does not give support for this interpretation. Removing
the factor 1/m in (40) and then using (43) yields

lim
m→∞

E [τ̃∗k τ̃l] =
〈〈
Tk(z), Φ−1

snr(z)δ(z − ξ)
〉
, Tl(ζ)

〉
=
〈
Tk, TlΦ−1

snr

〉
and with J , Jτ and ∇Jτ as in Theorem 1 we get

lim
m→∞

AsCov J(θ̂N ) =
〈
∇JτΦ−1

snr,∇Jτ
〉
,

which is the same as the upper bound (33).

The fact that the scaling factor 1/m is not present is es-
pecially important as it shows that certain properties,
even of highly complex systems, are not subject to what
is known as the “curse of complexity”, i.e., there are sys-
tem properties that can be accurately identified using
full order models also when the system is highly complex.
In Section 6 we will see some examples of such proper-
ties. For more details on this important topic we refer the
reader to Hjalmarsson (2005); Rojas et al. (2008, 2010);
Mårtensson and Hjalmarsson (2009).

5 Explicit use of orthonormal basis functions

In this section we will show how to explicitly express the
asymptotic variance (5) in terms of an orthonormal basis
for SΨ . For any given Ψ ∈ Ln×2

2 an orthonormal basis
{Bk}rk=1, r ≤ n for SΨ can be constructed by, e.g., Gram-
Schmidt orthonormalization. In some cases it is possible
to derive explicit expressions for the basis functions Bk.
A well known case (Ninness and Gustafsson; 1997) is
when

SΨ = Span

{
z−1

L(z)
,
z−2

L(z)
, . . . ,

z−n

L(z)

}
, (44)

where L(z) =
∏nl
k=1(1− ξkz−1), |ξk| < 1 for some set of

specified poles {ξ1, . . . , ξnl} and where n ≥ nl. Then, it
holds that

SΨ = Span {B1, . . . ,Bn} ,

where {Bk} are the Takenaka-Malmquist functions given
by (19)–(20), with ξk = 0 for k = nl + 1, . . . , n. In Nin-
ness and Hjalmarsson (2004) it is shown that the struc-
ture (44) holds for common model structures such as
Output-Error and Box-Jenkins provided the input spec-
trum has no zeros and sufficiently many numerator co-
efficients are estimated. Notice that the system zeros do
not affect the basis functions above.

5.1 Explicit variance expressions

As usual, let Ψ ∈ Ln×2
2 and Λ ∈ Cn×p. If {Bk}rk=1 is an

orthonormal basis for SΨ it is straightforward to show
that

Ψ∗(z)〈Ψ, Ψ〉†Ψ(z) =

r∑
k=1

B∗k(z)Bk(z).

Then, if Λ = Ψ(zo)L for some zo ∈ C and L ∈ C2×p we
get that (5) can be written as

AsCov J(θ̂N ) = L∗
r∑

k=1

B∗k(zo)Bk(zo)L, (45)

which also is found in Hjalmarsson and Mårtensson
(2011). The next result is an adaptation of (45) to the
re-parametrization in Theorem 1.

Theorem 4 Let the assumptions in Theorem 1 hold and
let {Bk}rk=1, r ≤ n, be an orthonormal basis for SΨ .
Assume also that

∂Jτ (τ(θo))

∂τk
= Tk(zo)α (46)

for some α ∈ C2×p and zo ∈ C. Then (45) holds with

L = R−1
snr(zo)α. (47)

Proof We need to prove that

Λ = 〈Ψ,∇JτR−∗snr〉 = Ψ(zo)R
−1
snr(zo)α. (48)

From (46) it holds that

〈Ψ,∇JτR−∗snr〉 =

∞∑
l=1

〈Ψ, TlR−∗snr〉 Tl(zo) α

=

∞∑
l=1

〈ΨR−1
snr, Tl〉 Tl(zo) α

= PY {ΨR−1
snr}(zo) α,

where Y is the space spanned by {Tl}∞l=1. However, due
to (16) and (23), ΨR−1

snr ∈ Y, so the projection can be
removed giving (48). �

Notice that under the conditions in Theorem 4, the con-
dition that ∇JτR−∗snr(z−∗) ∈ Lp×2

2 in (27) can be written
as

α∗
∞∑
k=1

T ∗k (zo)Tk(z) R−∗snr(z−∗) ∈ Lp×2
2 .
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5.2 Upper bounds

Here we will describe a case when a simple bound for
(45) can be found by a projection onto the subspace
H2

2 ⊂ L2
2. This gives a tighter bound than Theorem 2,

where the projection was made onto L2
2.

Let the asymptotic variance be given by (45) for a zo
such that |zo| > 1. An upper bound of (45) is obtained
by exchanging the basis functions {Bk} for basis func-
tions {B̃k} for the larger subspace H2

2. Since all ele-
ments of both G′(z, θo) and H ′(z, θo) have at least one
time delay, all elements of Ψ will also have at least one
time delay, and therefore we will exclude constant func-
tions. One such orthonormal basis is given by {B̃k(z)}∞k=1

where B̃k(z) = [z−(k+1)/2 0] when k is odd, and B̃k(z) =
[0 z−k/2] when k is even. For |zo| > 1 we then get

∞∑
k=1

B̃k
∗
(zo)B̃k(zo) =

[
1 0

0 1

] ∞∑
k=1

|zo|−2k=

[
1 0

0 1

]
1

|zo|2 − 1
,

which when inserted in (45) gives the upper bound

AsCov J(θ̂N ) ≤ 1

|zo|2 − 1
α∗ Φ−1

snr(zo) α. (49)

In some cases, we can find a similar expression that holds
with equality, as we will see in the following section.

5.3 Model structure independent example

Now, we turn to a less obvious insight that does not
seem to be generally known. Suppose that the explicit
expression (45) holds for some zo strictly outside the unit
circle and that Ψ contains a pole at z−1

o . Suppose further
that the orthonormal basis used in (45) is of the form
(19). If we then order the poles in Ψ such that ξ1 = z−1

o ,
we obtain from (19) that B1(zo) =

√
1− |zo|−2/(zo −

z−1
o ) and Bk(zo) = 0, k = 2, . . . , n, resulting in that

AsCov J(θ̂N ) =
1− |zo|−2

|zo − z−1
o |2

α∗ Φ−1
snr(zo) α. (50)

This expression is remarkable in that it is independent
of the model structure and model order. Now recall that
Ψ(z) = T ′(z, θo)Rsnr(zo). Thus in the cases when (45)
holds and when the experimental conditions can be cho-
sen such thatRsnr(z) has a pole at z−1

o , this choice makes
the asymptotic covariance the same for different model
structures and arbitrary model order. This insight is im-
portant in order to come to terms with the so called
“curse of dimensionality” discussed in Section 4.3. We
will illustrate this idea in Section 6.4 where the objec-
tive is to identify NMP-zeros. The geometric approach
has been used in Hjalmarsson et al. (2006); Mårtensson
and Hjalmarsson (2009) to generalize this result as well

as to show that certain optimality properties also hold
from an experiment design perspective.

6 Analysis of some LTI system properties

In this section we apply the results from Sections 4 and
5 to some specific examples of the function J(θ). The
main purpose is to show how the geometric approach
can be used in the analysis, but each of these results
are also of independent interest. Some of the examples
does not depend on the noise model. For those results
we introduce the notation

∇Jτ (z) =:
[
∇Jgτ (z) ∇Jhτ (z)

]
. (51)

6.1 Frequency response

We will first look at the covariance of the frequency re-
sponse estimate, i.e., J(θ) = T (ejωo , θ) for a fixed fre-
quency ωo when To is stable (so that the frequency re-
sponse is well defined). Then we get

Λ = T ′(ejωo , θo) = Ψ(ejωo)R−1
snr(ejωo),

where Ψ is given by (16). Now (45) can be applied to get
the covariance expression

AsCov T (ejωo , θ̂N )

= R−∗snr(ejωo)

n∑
k=1

B∗k(ejωo)Bk(ejωo) R−1
snr(ejωo), (52)

where {Bk}nk=1 is any orthonormal basis for the space
SΨ .

It is instructive to also consider the formulation in Theo-
rem 1 for expressingAsCov T (ejωo , θ̂N ).We will use basis
functions Tk (17) defined by Gk(z) = Hk(z) = z−(k−1)

so that

T (z, θ) =

∞∑
k=1

τk(θ)Tk(z)

is parameterized in terms of the impulse responses
of G(z, θ) and H(z, θ). For this problem Jτ (τ(θ)) =∑∞
k=1 τk(θ)Tk(ejωo) and hence ∂Jτ (τ)/∂τk = Tk(ejωo)

which implies that ∇Jτ , defined in (27), is not an L2-
function. Thus we instead look at J(θ) = T (zo, θ),
zo = rejωo , r > 1 and later we let r → 1. The function
∇Jτ is now given by

∇Jτ (z) =

[
1 0

0 1

] ∞∑
k=1

z̄−ko z−k =

[
1 0

0 1

]
z̄−1
o z−1

1− z̄−1
o z−1

,
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which is a function inL2 so that (27) holds. Furthermore,
(28) follows fromLemma 2with z = ejωo for this problem
and hence Assumption 1 holds. Thus, Theorem 1 applies
under the assumptions in Section 3.1.

In order to calculate the projection PSΨ{∇JτR−∗snr} in
Theorem 1, let {Bk}nk=1 be an orthonormal basis for SΨ ,
then

〈∇Jτ (z)R−∗snr(z−∗),Bk(z)〉

=
1

2πj

∮
|z|=1

z̄−1
o z−1

1− z̄−1
o z−1

R−∗snr(z−∗)B∗k(z−∗)
dz

z

= R−∗snr(zo)B∗k(zo). (53)

In the second equality we use that z−1R−∗snr(z−∗)B∗k(z−∗)
has all poles outside the unit circle (since all Bk contain
at least one unit time delay which cancels the factor z−1)
and residue calculus, see e.g., Wunsch (1993), gives the
result (53). The projection PSΨ{∇JτR−∗snr} can now be
computed as

PSΨ{∇JτR−∗snr}

=

n∑
k=1

〈∇JτR−∗snr,Bk〉Bk = R−∗snr(zo)

n∑
k=1

B∗k(zo)Bk.

With zo = rejωo and r → 1, we get the asymptotic
covariance

AsCov T (ejωo , θ̂N )

= R−∗snr(ejωo)

n∑
k=1

n∑
p=1

B∗k(ejωo)〈Bk,Bp〉Bp(ejωo) R−1
snr(ejωo)

= R−∗snr(ejωo)

n∑
k=1

B∗k(ejωo)Bk(ejωo) R−1
snr(ejωo),

which, of course, is the same as (52).

The covariance expression (52) was first established in
Ninness and Hjalmarsson (2004) by employing the the-
ory of reproducing kernels, see also Ninness and Hjal-
marsson (2005). Above we have shown that the results in
Ninness and Hjalmarsson (2004) can be given an alter-
native system theoretic interpretation as resulting from
a projection of the weighted z-transform of the sensi-
tivity of the system frequency function with respect to
the impulse response on a subspace determined by the
model structure, the true system and the experimental
conditions. The weighting function depends on the noise
to signal ratio during the experiment (which in turn de-
pends on the experimental conditions and the true sys-
tem). Our paper can also be seen as an extension of the
work in Ninness and Hjalmarsson (2004) regarding vari-
ance analysis in frequency function estimation to general
quantities J .

6.2 Impulse response

In this example we look at the asymptotic variance of
the coefficients τk of the estimated model T (z, θ) =∑∞
k=1 τk(θ)Tk(z), cf. (22), but we assume that only the

first nτ coefficients are of interest and we let

Jτ (τ) = τ =
[
τ1 · · · τnτ

]
.

Now dJτ
dτ = I (the identity matrix) and hence

∇Jτ (z) =


T1(z)

...

Tnτ (z)

 .
It is straightforward to verify the chain rule, (28) of As-
sumption 1. Using Theorem 1, the asymptotic covari-
ance can be expressed as

AsCov τ(θ̂N ) = 〈PSΨ{∇JτR−∗snr},PSΨ{∇JτR−∗snr}〉
≤ 〈∇JτΦ−1

snr,∇Jτ 〉, (54)

where the inequality comes from Theorem 2. If we con-
sider the impulse response coefficients gk corresponding
to Gk(z) = z−k in (17) we get for the diagonal block of
(54) that

AsCovgk(θ̂N ) ≤ 1

2π

∫ π

−π

Φv(ω)

Φru(ω)
dω.

6.3 L2-norm

Nowwe consider the asymptotic variance of theL2-norm
of the estimated model G(z, θ) =

∑∞
k=1 gk(θ)Gk(z), cf.

(18). The L2-norm is given by

‖G(·, θ)‖ =
√
〈G(·, θ), G(·, θ)〉 =

√√√√ ∞∑
k=1

g2
k(θ)

and since J is independent of the noise model H,
∇Jhτ (z) = 0 in (51) the function ∇Jgτ (z) is

∇Jgτ (z) =

∞∑
k=1

gk(θo)Gk(z)√∑∞
l=1 g

2
l (θo)

=
Go(z)

‖Go‖
∈ L2.

It is straightforward to verify the chain rule (28) in As-
sumption 1. Thus we can use Theorem 1 to express the
asymptotic variance as

AsCov ‖G(·, θ̂N )‖ =

∥∥∥PSΨ{[√λoGoH∗oS∗oR
∗ 0

]}∥∥∥2

‖Go‖2
. (55)
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The projection in (55) may be cumbersome to calculate,
but we can use Theorem 1 to get an upper bound of the
asymptotic variance:

AsCov ‖G(·, θ̂N )‖ ≤
‖Go‖2Φv/Φru
‖Go‖2

.

The bound can also be written in the form

AsCov ‖G(·, θ̂N )‖ ≤ 1

2π

∫ π

−π

Φv(ω)

Φru(ω)
wG(ω) dω,

where wG(ω) = |Go(ejω)|2/‖Go‖2 is a weighting func-
tion with 1

2π

∫ π
−πwG(ω) dω = 1. The weighting function

wG(ω) gives more weight to frequencies where the gain
is large. It is also straightforward to provide a lower
bound by following the derivations in Section 4.2. Pro-
vided Go(z) ∈ S ′T , which holds for many model struc-
tures, a lower bound can be given as

infω λmin

{
Φ−1

snr
}

supω λmax

{
Φ−1

snr
} ‖Go‖2Φv/Φru‖Go‖2

≤ AsCov ‖G(·, θ̂N )‖.

A simple upper bound is given by

AsCov ‖G(·, θ̂N )‖ ≤ sup
ω

Φv(e
jω)

Φru(ejω)
,

which could perhaps be of value for practitioners, since
it is independent of the true system. For example, if Φv
is known, without prior knowledge of Go, Φru can be
designed to guarantee a bound on the covariance of the
L2-norm of the estimated model G(z, θ).

6.4 Non-minimum phase zeros

Next we consider estimation of NMP-zeros of a stable
system Go. The zeros of the system are defined as the
solutions z to the equation G(z, θ) =

∑∞
k=1 gk(θ)z−k =

0 and we assume that the zero of interest, zo, is non-
minimum phase, i.e., |zo| > 1. The quantity of interest is
thus J(θ̂N ) = zo(θ̂N ). Since J is independent of the noise
model H, ∇Jhτ (z) = 0 in (51). Similar to Mårtensson
and Hjalmarsson (2009) we obtain

∂Jgτ (τo)

∂gk
= − zo

G̃o(zo)
z−ko ,

where G̃o(z) = Go(z)/(1−zoz−1), which gives, for |z| >
1/|zo|, that

∇Jgτ (z) = − z̄o

G̃o(zo)

∞∑
k=1

z̄−ko z−k

= − z̄o

G̃o(zo)

z̄−1
o z−1

(1− z̄−1
o z−1)

,

which is in L2. It is straightforward to verify that the
chain rule (28) of Assumption 1 hold and Theorem 1
thus applies. Suppose, for simplicity, that the numera-
tor polynomial B(q, θ), in G(q, θ) = B(q, θ)/A(q, θ), is
independently parameterized of A(q, θ). Lemma 2 gives
that g′k(θo) = 〈G′(z, θo), z−k〉 so that

∞∑
k=1

g′k(θo)
∂Jgτ (τo)

∂gk
= − zo

G̃o(zo)

∞∑
k=1

〈G′(z, θo), z−k〉 z−ko

= − zo

G̃o(zo)
G′(zo, θ

o) = − zo

B̃o(zo)

[
B′(zo(θ

o), θo)

0

]
,

where B̃o(z) = B(z, θo)/(1−zoz−1). The last expression
then equals J ′(θo) (Mårtensson and Hjalmarsson; 2009).

We have thus verified the conditions in Theorem 1 and
the asymptotic variance can be calculated in the same
way as in (53)-(54), or alternatively (45) could be ap-
plied, and, without giving all details, we get

AsCov zo(θ̂N ) =
λ0|zo|2
|G̃o(zo)|2

|Ho(zo)|2
|R(zo)|2

n∑
k=1

|B1
k(zo)|2, (56)

where Bk := [B1
k,B2

k] and {Bk}nk=1 is an orthonormal
basis for SΨ . The expression (56) is used in Mårtensson
and Hjalmarsson (2009) where also explicit expressions
and bounds for

∑n
k=1 |B1

k(zo)|2 are derived for certain
model structures.When an orthonormal basis of the type
given in Section 5 can be used, we see from (56) that the
asymptotic variance for a NMP-zero will be large if there
is another NMP-zero nearby. This follows from that the
factor |G̃o(zo)|2 in the denominator will be small in this
case and that the basis functions are independent of the
system zeros (see Section 5).

Bounds on the asymptotic variance for NMP zeros can
be derived using (49):

AsCov zo(θ̂N )

≤ λ0

(1− |zo|−2)|G̃o(zo)|2
|Ho(zo)|2

|So(zo)R(zo)|2
, (57)

or using Theorem 2:

AsCov zo(θ̂N ) ≤ 1

|G̃o(zo)|2

∥∥∥∥ 1

(1− z̄−1
o z−1)

∥∥∥∥2

Φv/Φru

=
λ0

(1− |zo|−2)|G̃o(zo)|2

∥∥∥∥ Ho

SoR

∥∥∥∥2

wZ

, (58)

where wZ(ω) = (1 − |zo|−2)/|1 − z−1
o ejω|2 can be seen

as a weighting function with 1
2π

∫ π
−πwZ(ω)dω = 1. The

weighting function wZ(ω) focuses on frequencies around
ω = arg(zo). Good accuracy of an NMP-zero estimate is
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thus guaranteed if |Ho/(SoR)| is small in this frequency
range.

The bound (58) is always larger than the bound (57)
which is a tight bound in the sense that equality holds
(in many cases) when the model order n goes to infinity,
see Mårtensson and Hjalmarsson (2009), which provides
a quite complete asymptotic variance analysis of both
zero and pole estimates. It is also shown in Mårtensson
and Hjalmarsson (2009) that the convergence is expo-
nentially fast in the model order, in some cases.

Before closing this section, we illustrate the idea out-
lined at the end of Section 3, i.e., that the input can be
used to make the asymptotic variance the same for dif-
ferent model structures and arbitrary model orders. For
simplicity we will assume that the NMP zero is real and
that the system is operating in open loop so that the
prediction error gradient (16) is given by

Ψ(z) = T ′(z, θo)

 R(z)√
λo Ho(z)

0

0 1
Ho(z)

 .
Assume first that an output error model is used and
that the spectral factor of the input is chosen as R(z) =
1/(z − z−1

o ). When nb ≥ nf + 1, as discussed in Section
5, it then follows that (19) is an orthonormal basis with
ξ1 = z−1

o and the other poles being the poles of the true
system dynamics are counted twice. Similar to (50), (56)
then collapses to

AsCov zo(θ̂N )

=
λ0|zo|2
|G̃o(zo)|2

|Ho(zo)|2
|R(zo)|2

n∑
k=1

|B1
k(zo)|2 =

λ0 (|zo|2 − 1)

|G̃o(zo)|2
.

Due to the presence of R(z) in Ψ it can easily be shown
that exactly the same result is obtained for Box-Jenkins
models (under the same order condition on nb and nf ).
Thus an input with spectral factor R(z) = 1/(z − z−1

o )
ensures that the asymptotic variance of an estimate of
an NMP-zero at zo becomes independent both of the
model and system order and also the model structure.
One may argue that this choice of input is infeasible
since it depends on the to be estimated zero. However,
this insight is of independent value; it has been shown
that using an estimate of the NMP-zero in R instead,
an adaptive scheme will achieve the optimal asymptotic
variance, under quite mild conditions, see Rojas et al.
(2011).

7 Conclusions

The main results in this paper are Theorem 1 and Theo-
rem 4 which are the result of careful reparametrization of
formulas found in Mårtensson and Hjalmarsson (2011).

With this novel reparametrization, these theorems ex-
press the asymptotic covariance as defined by (5). We
have shown that these geometric expressions provide in-
sights into how model structure, model order, true sys-
tem dynamics, and experimental conditions affect the
asymptotic covariance. In particular, we demonstrated
that one can use the experimental conditions to make
the asymptotic variance independent of model order and
model structure in some cases.

We have also used these expressions to derive novel
model structure independent upper bounds of the
asymptotic covariance, in particular for a number of
commonly estimated quantities such as system zeros and
gains and impulse response coefficients. We have shown
that these bounds are significantly less conservative as
compared to the variance expressions that result from
using the (asymptotic in model order) variance formulae
for frequency function estimation in Ljung (1985).

Our work has its foundation in Ninness and Hjalmarsson
(2004), where the significance of the subspace spanned
by the prediction error gradient was acknowledged and
we have shown that the results in Ninness and Hjalmars-
son (2004) are recovered from the results in this paper.
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