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Abstract

High-order ARX models can be used to approximate a quite general class of linear systems in a parametric model structure, and well-
established methods can then be used to retrieve the true plant and noise models from the ARX polynomials. However, this commonly
used approach is only valid when the plant is stable or if the unstable poles are shared with the true noise model. In this contribution, we
generalize this approach to allow the unstable poles not to be shared, by introducing modifications to correctly retrieve the noise model
and noise variance.
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1 Introduction

The prediction error method (PEM) is a benchmark in sys-
tem identification to obtain models for linear systems, since
it provides asymptotically efficient estimates if the chosen
model orders are correct [1]. The drawback with PEM is
that, in general, it requires solving a non-convex optimiza-
tion problem, and may not attain the global minimum. How-
ever, for some particular model structures, minimizing the
cost function of PEM is a linear regression problem. This is
the case of autoregressive exogenous (ARX) models.

Despite the usefulness of ARX models due to the simplicity
of estimation, they provide limited flexibility, not allowing
the plant and the noise model to be parametrized indepen-
dently. In this sense, Box-Jenkins (BJ) models are a more
encompassing choice, as the plant and noise model are ra-
tional transfer functions parametrized independently. How-
ever, estimating BJ models with PEM suffers the drawbacks
of solving a non-convex optimization problem.

Another advantage of ARX models is that, if the polyno-
mial orders are allowed to increase, they can approximate
a BJ model arbitrarily well. The limitation is that, as the
number of parameters increases, so does the variance of the
estimated model. Nevertheless, high-order ARX models are
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still useful: e.g., they can be used as an intermediate step to
obtain a parsimonious model [2–5].

If the plant is stable or if it shares all the unstable poles with
the true noise model, it is well known that the plant and noise
model can be recovered from the ARX polynomials [6]. In
this paper, we generalize these results to unstable plants,
where some of the unstable poles are not shared by the
noise model. Although this is a non-standard case, because
PEM with a correctly parametrized model has an unstable
predictor, it makes sense: for example, if the noise model
is used to model a sensor, restricting this model to contain
eventual unstable plant dynamics is unreasonable from a
physical perspective. To apply PEM in such a case, methods
have been proposed to deal with unstable predictors [7, 8].

In this paper, we consider systems that encompass BJ struc-
tures, but also allow for shared poles between the plant
and noise model. Our contributions are the following. First,
we derive the ARX polynomials obtained asymptotically
when the plant has unstable poles not shared with the noise
model. Second, we observe that appropriate corrections are
required to obtain consistent estimates of the noise model
and the noise variance, and illustrate how these can be ap-
plied. Third, although the variance of the estimated model
increases with the number of estimated parameters, we ob-
serve that the variance of the unstable poles remains small.

2 Problem Statement

Consider that data is generated by

yt = G(q)ut +H(q)et , (1)
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where ut is the plant input, et is Gaussian white noise with
variance λe, yt is the output, and G(q) and H(q) are the
true plant and noise models, respectively, which are rational
transfer functions in the delay operator q−1, given by

G(q) :=
L(q)

Γ(q)F(q)
, H(q) :=

C(q)
Γ(q)D(q)

, (2)

and

L(q) := l1q−1+. . .+ lml q
−ml ,

Γ(q) := 1+ γ1q−1+. . .+ γmγ
q−mγ ,

F(q) := 1+ f1q−1+. . .+ fm f q−m f ,

C(q) := 1+ c1q−1+. . .+ cmcq−mc ,

D(q) := 1+d1q−1+. . .+ fmd q−md ,

where ml , mγ , m f , mc, and md are finite positive integers.
Note that we are considering a more general class of mod-
els than BJ, which corresponds to Γ(q) = 1. Although the
novelty of the results derived in this paper concerns the case
where G(q) and H(q) are parametrized independently, so
that H(q) does not share eventual unstable poles of G(q), we
include for completeness the possibility that some poles are
shared through the polynomial Γ(q). Since the possibility
of G(q) and H(q) sharing poles is already included through
Γ(q), we assume that F(q) and D(q) are co-prime (i.e., they
do not share common factors).

We impose that C(q) and D(q) are stable polynomials (i.e.,
all the roots lie inside the unit circle) and that F(q) does not
contain roots on the unit circle. Since Γ(q) and F(q) are not
required to be stable, we consider that the data is obtained
with stabilizing feedback,

yt = G(q)S(q)rt + H(q)S(q)et ,

ut = S(q)rt −K(q)H(q)S(q)et ,
(3)

where rt is a known external reference uncorrelated with
et , S(q) = [1+K(q)G(q)]−1 is the sensitivity function, and
K(q) is a stabilizing regulator.

Consider also the ARX model

A(q)yt = B(q)ut + et , (4)

with infinite order polynomials

A(q) = 1+
∞

∑
k=1

akq−k, B(q) =
∞

∑
k=1

bkq−k.

Using a quadratic cost, the PEM estimate of the ARX model
minimizes the cost function

J := E [Ayt −But ]
2 , (5)

as the number of samples tend to infinity (here, the argument
q was dropped for notational simplicity). Because the data

are generated by (3), the cost function can be expressed as

J = E [(AG−B)Srt +(A+KB)HSet ]
2 . (6)

Then, the global minimizers of (6), Ā(q) and B̄(q), can be
related to G(q) and H(q).

It is well known that, with the additional assumption that
F(q) is stable, (6) is minimized by [6]

Ā(q) =
1

H(q)
=

Γ(q)D(q)
C(q)

,

B̄(q) =
G(q)
H(q)

=
D(q)
C(q)

L(q)
F(q)

,

(7)

with minimum

J? = λe. (8)

Thus, an infinite order ARX model can be used to asymp-
totically recover G(q), H(q), and the noise variance λe.

In this paper, we seek the minimizers Ā(q) and B̄(q) of (6)
in the case of more general unstable plants, when F(q) is
also allowed to be unstable. In this case, the unstable poles
of the plant are not shared with the noise model.

3 ARX Minimizer of Unstable BJ Model

First, we introduce a result that will be used to derive our
main result.

Proposition 1 Let Z(q) and its inverse be power series in
q−1 that are analytic outside and on the unit circle, and
such that Z(∞) = 1. Let X(q)—also a power series in q−1

satisfying X(∞) = 1—be the argument of the cost function

J =
1

2π

∫
π

−π

∣∣X(eiω)
∣∣2 ∣∣Z(eiω)

∣∣2 dω. (9)

Then, (9) has the unique minimizer X̄(q) = Z−1(q) and min-
imum J? = 1.

PROOF. This is a standard result, see e.g. Problem 3G.3
in [1]. A proof is included for completeness. The product
X(q)Z(q) can be expanded as a polynomial,

X(q)Z(q) =
∞

∑
i=0

giq−i, (10)

where g0 = 1, since X(∞) = Z(∞) = 1. Using Parseval’s
identity on (9) together with (10) yields

J = 1+
∞

∑
i=1
|gi|2 ≥ 1.

2



The minimum J∗ = 1 is obtained for X̄(q) = Z−1(q), since
Z(q) is inversely stable. Because the inverse is unique, the
minimum will not be attained for any other X(q), since then
at least one gi 6= 0, i > 0. 2

Before stating the main result of the paper, we introduce the
following definitions. Consider the factorization

F(q) = Fs(q)Fa(q), (11)

where Fs(q) and Fa(q) contain the stable (magnitude less
than one) and anti-stable (magnitude larger than one) roots
of F(q), respectively. Also, we define F∗a (q) as the polyno-
mial with the roots of Fa(q) mirrored inside the unit circle,
i.e., F∗a (q) =∏

na
k=1(1− p−1

k q−k), where {p1, . . . , pna} are the
unstable roots of F(q).

The following theorem states our main result.

Theorem 2 Let H(q) be stable and inversely stable, and
factorize F(q) according to (11). The asymptotic minimizers
of (6) are given by

Ā(q) =
1

H(q)
Fa(q)
F∗a (q)

=
Γ(q)D(q)

C(q)
Fa(q)
F∗a (q)

,

B̄(q) =
1

H(q)
L(q)

Γ(q)Fs(q)F∗a (q)
=

D(q)
C(q)

L(q)
Fs(q)F∗a (q)

,

(12)

and the attained global minimum is

J? =
∣∣∣∣ Fa(eiω)

F∗a (eiω)

∣∣∣∣2 λe. (13)

PROOF. Using that rt and et are uncorrelated and Parseval’s
identity, (6) can be written as

J = Jr + Je, (14)

where

Jr =
1

2π

∫
π

−π

|AG−B|2 |S|2 Φr dω, (15)

Je =
1

2π

∫
π

−π

|A+KB|2 |HS|2 λe dω, (16)

with Φr the spectrum of rt . Let

S̃(q) :=
S(q)
Fa(q)

=
Fs(q)

F(q)+K(q)L(q)
,

and re-write (16) as

Je =

∣∣∣∣ Fa

F∗a

∣∣∣∣2 1
2π

∫
π

−π

|A+KB|2
∣∣HS̃F∗a

∣∣2 λe dω,

where
∣∣Fa(eiω )/F∗a (e

iω )
∣∣ is moved outside the integral since it is

an all-pass filter. Therefore, since A(q)+K(q)B(q) is monic,
and H(q)S̃(q)F∗a (q) is monic, stable, and inversely stable,
they can be expanded as power series in q−1 satisfying the
conditions of X(q) and Z(q), respectively, in Proposition 1.
Then, we can use this result to conclude that Je is minimized
by

A(q)+K(q)B(q) = [H(q)S̃(q)F∗a (q)]
−1. (17)

If (15) can be made zero while satisfying (17), a global
minimizer for J has been found. This is done by setting Ā(q)
and B̄(q) according to (12), with minimum (13). 2

Notice that, if F(q) is stable, Fa(q) = 1 = F∗a (q) and Fs(q) =
F(q), and (12) reduces to (7). Moreover, using a similar
approach to Theorem 2, it is straightforward to extend this
result to the case with a non-minimum phase noise model
H(q). In this case, the noise model H(q) in (12) will be
replaced by its minimum phase equivalent. This corresponds
to the well known result that PEM identifies an equivalent
minimum phase noise model if the true noise model is non-
minimum phase [7].

Recovering G(q) from the asymptotic minimizers of the
ARX model is straightforward, as

G(q) =
B̄(q)
Ā(q)

. (18)

The following corollary describes how the noise model and
the variance λe can be retrieved.

Corollary 3 Let J? be the asymptotic minimum of (6), and
Ā(q) the corresponding minimizer. Then, the noise model
H(q) and the noise variance λe can be retrieved by

H(q) =
1

Ā(q)
Āa(q)
Ā∗a(q)

(19)

and

λe = J?
∣∣∣∣ Ā∗a(eiω)

Āa(eiω)

∣∣∣∣2 , (20)

respectively.

PROOF. The asymptotic minimizer Ā(q) can be factorized
by one polynomial Fa(q) with anti-stable roots and one poly-
nomial with only stable roots corresponding to 1/H(q)F∗a (q).
Thus, Fa(q) can be retrieved as the anti-stable roots of Ā(q),

Fa(q) = Āa(q). (21)

Then, (19) follows directly from (12) and (21), while (20)
follows from (13) and (21). 2
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Comparing Corollary 3 to (7) and (8), it is observed that the
noise model H(q) and noise variance λe will be wrongly
estimated if the appropriate corrections due to the unstable
plant are not made. In particular, we observe that Āa(q)/Ā∗a(q)
is an amplifying all-pass filter. So, without this correction
factor, the magnitude of the noise model is underestimated
by a constant bias, and the noise variance is overestimated.

4 Practical Aspects

So far, we have only discussed consistency of the ARX
model. For the consistency results to be valid, the ARX
model has to be of infinite order. Otherwise, the system (1)
is not in the model set defined by (4), and a bias is induced
by the truncation. For estimation purposes, we consider the
ARX model (4), whose polynomials are given by

A(q) = 1+
na

∑
k=1

akq−k, B(q) =
nb

∑
k=1

bkq−k,

where the orders na and nb are chosen large enough for these
polynomials to capture the dynamics of the true system. In
that case, the bias error due to the truncation is assumed to
be small.

The inherent limitation of estimating a high order model is
that the estimated model will have high variance. However,
we observe that this does not apply to the unstable poles
of the ARX model, as will be illustrated with a simulation
in the next section. Thus, the estimate of Fa(q) obtained
from (21) will have high accuracy in comparison to the com-
plete high order ARX-model estimate. In turn, this means
that the noise variance can be estimated according to (20)
with high accuracy.

There is theoretical support for the observation that the un-
stable roots of A(q) have low variance. For systems with the
same form as (2), it has been shown that the variance of any
unstable root will converge to a finite limit (cf. Theorem 5.1
in [9]). However, this result is not directly applicable to the
setting of this paper, since such variance analysis requires
that the model order tend to infinity as function of the sam-
ple size N, similarly to the approach in [6]. There is no con-
ceptual reason limiting the extension of this theorem to our
setting; however, due to the technical effort required, it will
be considered in a separate contribution.

5 Examples

Consider the plant and noise models

G(q) =
1q−1−1.7q−2

1−2q−1 +2q−2 , H(q) =
1+0.2q−1

1−0.9q−1 ,

which are used to generate data according to (3) with the
controller K(q) = 1, where rt and et are uncorrelated Gaus-
sian white noise sequences with unit variance. Notice that

the plant G(q) has a pair of unstable complex poles at 1± i,
not shared with H(q) .

We use this system for two examples. First, we illustrate
the limit properties of the ARX model that were shown in
Section 3; then, we use different orders of the ARX model to
illustrate the observation in Section 4 regarding the variance
of the estimated unstable poles.

5.1 Limit Properties of the ARX Model

The objective of this example is to illustrate the result ob-
tained in Theorem 2, and how Corollary 3 can be used to
obtain estimates of G(q) and H(q) when F(q) is unstable.
Because these results concern the limit values, in both model
order and sample size, of the estimates of A(q) and B(q),
they can be more clearly illustrated if the estimation error is
kept small. Thus, to minimize the bias error due to the ARX
model truncation, we choose G(q) and H(q) such that the
coefficients of Ā(q) and B̄(q) decay quickly, which allows
us to use a relatively low order (na = nb = 15). The low
model order together with a large sample size (N = 100000)
ensure that also the variance error will be small. Finally, we
are also interested in estimating the noise variance, λe.

The procedure is as follows. First, the ARX polynomials
A(q) and B(q) are estimated by minimizing the cost function

J =
1
N

N

∑
t=1

[A(q)yt −B(q)ut ]
2 ,

which is a consistent estimate of (5) for finite sample size.
This is a least-squares problem, and yields estimates Â(q)
and B̂(q), at which the minimum Ĵ is obtained.

Then, we estimate the plant and noise model from the es-
timated ARX polynomials. Motivated by (18) and (19), we
calculate

Ĝ(q) =
B̂(q)
Â(q)

, Ĥ(q) =
1

Â(q)
Âa(q)
Â∗a(q)

.

In Fig. 1 and Fig. 2, the Bode plots of G(q) and H(q) are
shown respectively together with their corresponding esti-
mates, and, in the case of the noise model, also the estimate
without the correction for the unstable plant is shown. Here,
it is observed that the ARX model correctly captures the true
system, according to (12). In particular, this illustrates the
main result of this paper, that when the plant G(q) has un-
stable poles and is parametrized independently of the noise
model H(q), a high-order ARX model is still appropriate
to consistently model this system. However, while the stan-
dard result (7) still applies to consistently retrieve the plant,
a consistent estimate of the noise model is obtained by using
a correction factor according to (19).

4
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Fig. 1. Bode plot of G(q) (red, dashed) and its estimate Ĝ(q)
(blue, full).
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Fig. 2. Bode plot of H(q) (red, dashed), its estimate Ĥ(q) (blue,
full), and its uncorrected estimate Â−1(q) (yellow, dash-dotted).

Finally, we are interested in estimating the noise variance,
λe. With that purpose, motivated by (20), we calculate

λ̂e = Ĵ
∣∣∣∣ Â∗a(eiω)

Âa(eiω)

∣∣∣∣2 . (22)

Recalling that λe = 1, the results obtained for this example
were

Ĵ = 3.9816, λ̂e = 0.9988.

Again, we observe how the high-order ARX model can still
be used to obtain a consistent estimate of the noise variance,
even in our generalized setting for unstable plants, as long
as the appropriate correction (22) is made. Otherwise, taking
the minimum Ĵ as estimate for the noise variance, as in (8),
would overestimate the noise variance by a factor of four.

5.2 Variance of the Estimated Unstable Poles

As ARX models typically need to be of high order to capture
the dynamics of a system with G(q) and H(q) given by (2),

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1

Fig. 3. Roots of Â(q) for 50 Monte Carlo runs and na = nb = 15.
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−1

−0.5

0

0.5

1

Fig. 4. Roots of Â(q) for 50 Monte Carlo runs and na = nb = 100.

the variance of the estimated model will be large. Although
this intrinsic limitation was not evident in the previous ex-
ample, since the dynamics of the considered system can be
captured with relatively low orders of A(q) and B(q) (and a
large sample size was used), it can be made clear by letting
the order of the ARX polynomials increase.

As the variance of the estimated Â(q) will be large, also
the variance of the estimated poles of G(q) should be large,
since the poles of G(q) are obtained from the roots of Â(q).
However, following the discussion in Section 4, we observe
that this does not apply to the variance of the unstable poles.

To illustrate this, we perform a Monte Carlo simulation with
50 runs, where two ARX models with different orders are
computed. The roots of Â(q) are plotted in Fig. 3 and Fig.
4, for na = nb = 15 and na = nb = 100, respectively. Here,
it is clear that the variance of the unstable poles is small
relative to the stable ones, and also that there is no apparent
variance increase for the unstable poles when the number of
estimated parameters increases.

6 Discussion

In this paper, we derived asymptotic results for the limit
values of ARX models when used to model a system with

5



an unstable plant that does not necessarily share the unstable
poles with the true noise model. High-order ARX models
can still be used to model the underlying system in this
situation. However, while B(q)/A(q) still captures the plant,
1/A(q) no longer corresponds to the noise model H(q), but
will also depend on the unstable part of F(q).

This result has also implications for modeling output-error
(OE) structures with high-order models. Typically, in this
case, a high-order finite impulse response model can be esti-
mated instead of an ARX, since H(q) = 1 = A(q). However,
that is only the case if G(q) is stable. When G(q) is unstable,
a finite-order polynomial B(q) is not sufficient to approxi-
mate G(q) arbitrarily well. Thus, even if the true system is
OE, an ARX model is required to asymptotically capture the
system dynamics in this case.

The results in this paper also have a correspondence to those
in [8]. Therein, the authors derive modified, but asymptot-
ically equivalent, versions of OE and BJ models that yield
stable predictors in the case of unstable systems. The modi-
fied versions contain an additional factor F∗a (q)/Fa(q) to be es-
timated in the noise model, which corresponds to the same
quantity appearing in the estimate of 1/A(q) here derived.

Finally, we have shown how the plant, noise model, and
noise variance of a system as (1) can be obtained from an
estimated ARX model, in the case of an unstable plant. Also,
we note that the high variance inherent to the high order of
the ARX model does not affect the estimation of the unstable
poles nor the estimation of the noise variance.
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