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Abstract: For identification of systems in dynamic networks, two-stage and instrumental vari-
able methods are common time-domain methods. These methods provide consistent estimates of
a chosen module of the network without estimating other parts of the network or noise models.
However, disregarding noise modeling may come at a cost in estimation error. To capture the
noise contribution, we propose the following procedure: first, we estimate a non-parametric
model of an appropriate part of the network; second, we estimate the module of interest using
signals simulated with the non-parametric model. The simulated signals are derived from an
asymptotic maximum likelihood criterion. Preliminary simulations suggest that the propose
method is competitive with existing approaches and is particularly beneficial with colored noise.
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1. INTRODUCTION

Dynamic networks are often too complex to be estimated
as a whole using the prediction error method (Ljung, 1999).
Estimating a chosen part of the network is computationally
more appealing. However, using internal signals as inputs to
the identification problem and applying a direct prediction
error method (PEM) is often problematic: with feedback
loops, the noise must be correctly modeled to obtain
consistent estimates; with sensor noise, we have an errors-
in-variables (EIV) setting, for which PEM is biased.
Approaches to obtain consistent estimates of network
modules have been studied by, among others, Dankers et al.
(2016, 2015); Dankers and Van den Hof (2015); Gunes et al.
(2014); Van den Hof et al. (2013).

In an EIV setting and without estimating a noise model,
possible approaches include instrumental variable (IV)
methods (Dankers et al., 2015) and two-stage meth-
ods (Van den Hof et al., 2013). In the latter, noiseless
inputs are simulated from a non-parametric estimate of an
appropriate part of the network. Although these methods
are consistent, disregarding noise modeling may come at a
cost in estimation error. Some frequency-domain methods
deal with this issue: a fully non-parametric approach has
been proposed by Dankers and Van den Hof (2015); the
method proposed by Pintelon et al. (2010a,b) can also be
used in this scenario, where a semi-parametric approach is
taken—the noise model is captured by a non-parametric
model and the plant model of interest is parametric.

In this paper, we propose a time-domain method to deal
with the noise contribution also using semi-parametric
approach. For single-input single-output (SISO) systems,
this type of approach has been used by Everitt et al. (2016),
named Model Order Reduction Steiglitz-McBride. Here, we
? This work was supported by the Swedish Research Council under
contracts 2015-05285 and 2016-06079.
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Fig. 1. Example of a dynamic network.

extend this approach to estimate a module in a dynamic
network. First, we estimate a non-parametric ARX model
of an appropriate part of the network. Second, we estimate
the module of interest using signals simulated from the
ARX model and the Steiglitz-McBride method.

Although the basic idea resembles two-stage methods, the
main contribution is that we use an asymptotic maximum
likelihood (ML) criterion (Wahlberg, 1989) to derive the
filters that simulate the signals. Because of the theoretical
support on an ML criterion, we argue that the method may
provide lower estimation error than alternative approaches.
We support this argument by simulations, where we observe
that the method is most beneficial for colored noise.

2. IDENTIFICATION OF SYSTEMS IN DYNAMIC
NETWORKS: AN OVERVIEW

Consider the dynamic network in Fig. 1, written asw1
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We have the following assumptions:



• G12(q), G23(q), and G31(q) are rational transfer func-
tions in the delay operator q−1, with at least one
containing a delay;
• {v1

t }, {v2
t }, and {v3

t } are unknown process noise
sequences given by Gaussian white noise sequences
with finite variance filtered by unknown stable filters;
• {w1

t }, {w2
t }, and {w3

t } are measurable signals, whose
measurements are given by

w̃kt = wkt + skt , (2)

k = {1, 2, 3}, where {s1
t}, {s2

t}, and {s3
t} are measure-

ment noise sequences obtained by unknown stable
filters driven by Gaussian white noise;
• {rt} is a known bounded reference signal, uncorrelated

with the noise signals.

We will use this network throughout the paper to review
available methods and to explain the proposed method.
The objective is to estimate G12(q), parametrized as

G12(q, θ) =
L12(q, θ)

F12(q, θ)
=

l1q
−1 + · · ·+ lmq

−m

1 + f1q−1 + · · ·+ fmq−m
, (3)

where θ = [f1 · · · fm l1 · · · lm]
>

are the parameters to
estimate. We assume that there is unique θ = θo such that
G12(q) = G12(q, θo).

Alternatively to the recursive description in (1), the network
can also be described by the relation from its external input
signals to the measured output signals (2):w̃1

t
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with S(q) = [1−G12(q)G23(q)G31(q)]−1 and

Hv(q)=S(q)

[
1 G12(q) G12(q)G23(q)

G23(q)G31(q) 1 G23(q)
G31(q) G12(q)G31(q) 1

]
.

Estimating the individual network modules with PEM
using the complete network description can be problematic
in several aspects. For this reason, identification in dynamic
networks concerns estimating particular modules of interest.
In our example, we are interested in G12(q). If the signals
{w1

t , w
2
t } were known, the perhaps most natural approach

to estimate G12(q) would be to use these signals as
output and input to PEM. This is known as the direct
approach (Van den Hof et al., 2013). Because there is
feedback in the network, this approach has a disadvantage
that the noise contribution {v1

t } must be correctly modeled
to achieve a consistent estimate of G12(q). Nevertheless,
the direct approach is not applicable in our setting: because
{w1

t , w
2
t } are not known, but measured with noise according

to (2), we need to use {w̃1
t , w̃

2
t } as output and input to the

identification problem. This creates an errors-in-variables
(EIV) problem, for which PEM provides biased estimates.
We proceed to review two possible time-domain methods
to consistently identify G12(q): the two-stage (or indirect)
method and the instrumental variable (IV) method.

2.1 The Two-Stage Method

The two-stage method was proposed by Van den Hof and
Schrama (1993) to obtain consistent estimates of a plant
from closed-loop data without having to estimate a noise
model. However, it can also be applied in the network case

to simulate the desired input signal as follows (Van den
Hof et al., 2013).

For the first stage, the measured input to G12(q) is (4)

w̃2
t = S(q)G23(q)rt

+ S(q)[G23(q)G31(q)v1
t + v2

t +G23(q)v3
t ] + s2

t .

Because {rt} is uncorrelated with the noise signals, esti-
mating a high-order FIR model (without loss of generality,
one delay is assumed in G23)

w̃2
t =

n∑
k=1

ηkq
−krt + et, (5)

where n is the model order and {ηk}nk=1 are the param-
eters to estimate, provides a non-parametric estimate of
S(q)G23(q) that is arbitrarily close to a consistent estimate
as n increases. This stage provides estimates {η̂k}nk=1 of
{ηk}nk=1, by solving the least-squares problem

η̂ =

[
1

N

N∑
t=1

ϕ>t ϕt

]−1 [
1

N

N∑
t=1

ϕtw̃
2
t

]
, (6)

where N is the sample size, η = [η1 · · · ηn]
>

, and ϕt =

[rt−1 · · · rt−n]
>

.

For the second stage, we simulate a noiseless input to
G12(q) by

ŵ2
t :=

n∑
t=1

η̂kq
−krt. (7)

Then, PEM can be applied to the output-error (OE) model

w̃1
t = G12(q, θ)ŵ2

t + et, (8)

which provides a consistent estimate of G12(q).

2.2 The Instrumental Variable Method

Instrumental variable methods (Söderström and Stoica,
1983) can provide consistent estimates of a plant without
estimating a noise model and in an EIV setting (Thil et al.,
2008). Thus, they are appropriate to estimate systems in
dynamic networks (Dankers et al., 2015).

IV methods are a generalization of the least-squares method.
To explain the idea, we start by using (1) and (2) to write

w̃1
t = ϕ>t θ + F12(q)v2

t + F12(q)s1
t − L12(q)s2

t ,

where ϕt =
[
−w̃1

t−1 · · · −w̃1
t−m w̃2

t−1 · · · w̃2
t−m

]>
. With

an IV method, θ is estimated by solving

θ̂ =

[
1

N

N∑
t=1

z>t ϕt

]−1 [
1

N

N∑
t=1

ztw̃
2
t

]
, (9)

where zt is a vector containing an appropriate set of
variables called instruments. If zt ≡ ϕt, (9) reduces to
the least-squares method, which provides biased estimates
because the residual term

w̃1
t − ϕ>t θ = F12(q)v2

t + F12(q)s1
t − L12(q)s2

t (10)

is not white. Using (9) provides a consistent estimate if zt
is correlated with ϕt and uncorrelated with the residual
term (10). Here, the reference signal {rt} may be used
to construct the instruments because it is correlated with
{w̃1

t , w̃
1
t } and uncorrelated with {v2

t , s
1
t , s

2
t}. On the other

hand, {w̃3
t } is not a candidate instrument because it is



correlated with {v2
t }. Although a generalized IV approach

allows other instruments to be used (Dankers et al., 2015),
we consider it outside the scope of this paper because it
requires estimating a parametric noise model.

2.3 Summary and Potential Improvement

The reviewed approaches to estimate systems in dynamic
networks focus on obtaining consistent estimates of par-
ticular modules, but they do not attempt to reduce the
variance of the estimates. The latter problem has been
considered, for example, in the two-stage method extension
by Gunes et al. (2014). However, none of these approaches
considers the noise signal properties when estimating a
particular module. While we want to avoid estimating a
parametric noise model, not taking the noise properties
into account potentially increases the estimation error.

For SISO systems, there are approaches that capture
the noise model with a non-parametric model and the
plant with a parametric model: for example, the method
by Schoukens et al. (2011) in the frequency domain and
the method by Everitt et al. (2016) in the time domain.
To estimate a module in a dynamic network with a similar
semi-parametric approach, the frequency domain method
by Pintelon et al. (2010a,b) can be applied. This method
consists of two steps. In the first step, the parts of the noisy
input and output signals to the module of interest that are
correlated with the reference signal are estimated with the
noise covariance, using the local polynomial method. In the
second step, the non-parametric estimates of these signals
and of the noise covariance are used as starting point
to estimate a parametric plant model using the sample
maximum likelihood (SML) estimator.

In this paper, we address the problem of noise modeling
in dynamic networks in the time domain, by extending
the Model Order Reduction Steiglitz-McBride (MORSM)
method by Everitt et al. (2016) to this scenario. With this
method, the parametric estimate of the plant is obtained
from a non-parametric estimate, where the reduction is
motivated by an asymptotic ML criterion. We proceed to
review the SISO version of this method and the theoretical
background that motivates it, which will be essential for the
generalization to estimate modules in dynamic networks.

3. THE MODEL ORDER REDUCTION
STEIGLITZ-MCBRIDE METHOD

Consider the SISO system

yt = G(q)ut +H(q)et, (11)

where G(q) and H(q) can be described by rational transfer
functions. We parametrize the plant by G(q, θ), similarly
to (3). MORSM allows us to obtain an asymptotically
efficient estimate of G(q) without estimating a parametric
model for H(q) and without explicitly solving a non-convex
optimization problem.

If PEM is used with data obtained in open loop, H(q)
can be over-parametrized without affecting the asymptotic
properties of the estimated G(q, θ). However, choosing the
noise-model order arbitrarily large will make the problem
computationally more difficult for PEM. The exception is
if an ARX model structure is used, in which case the global

minimum of the prediction error criterion can be found by
least squares. This consists in estimating the model

A(q, η)yt = B(q, η)ut + et, (12)

where

A(q, η) = 1 +

n∑
k=1

akq
−k, B(q, η) =

n∑
k=1

bkq
−k,

and η = [a1 · · · an b1 · · · bn]
>

, providing estimates η̂.

If the ARX-model order n is allowed to be arbitrarily
large, (12) models (11) with arbitrary accuracy (Ljung and
Wahlberg, 1992). Then, asymptotically in model order, the
ARX-model estimate can be used to obtain non-parametric
estimates of G(q) and H(q) by

Ĝ(q) =
B(q, η̂)

A(q, η̂)
, Ĥ(q) =

1

A(q, η̂)
. (13)

The asymptotic distribution of the non-parametric estimate
G(q, η̂) can be characterized in the frequency domain
by (Wahlberg, 1989)

Ĝ(ejω)−G(ejω) ∼ N
(

0,
n

N

Φv(e
iω)

Φu(eiω)

)
,

where N stands for the normal distribution, Φu(eiω) is the
spectrum of the input and Φv(e

iω) is the spectrum of the
noise term v := H(q)et. This motivates that the reduction

from the non-parametric estimate Ĝ(q) to a parametric
one—G(q, θ)—be performed by minimizing the asymptotic
maximum likelihood criterion

VN (θ) =

∫ 2π

0

∣∣∣Ĝ(eiω)−G(eiω, θ)
∣∣∣2 Φu(eiω)

Φv(eiω)
dω.

Because Φv(e
iω) is typically unknown, we need to replace

it by an estimate. As shown by Wahlberg (1989), Φv(e
iω)

may be replaced by its non-parametric (scaled) estimate

|Ĥ(q)|2 without affecting the asymptotic properties of the
estimate of G(q, θ). Thus, minimizing

VN (θ) =

∫ 2π

0

∣∣∣Ĝ(eiω)−G(eiω, θ)
∣∣∣2 Φu(eiω)

|Ĥ(eiω)|2
dω (14)

provides an asymptotic efficient estimate of θ.

In the time domain, a consistent estimate of (14) for finite
sample size is given by

VN (θ) =
1

N

N∑
t=1

[
Ĝ(q)−G(q, θ)

Ĥ(q)
ut

]2

. (15)

In turn, using (13), we can re-write (15) as

VN (θ) =
1

N

N∑
t=1

[B(q, η̂)ut −G(q, θ)A(q, η̂)ut]
2
. (16)

The ASYM method (Zhu, 2001) consists in minimizing (16),
which is an OE problem with a simulated output and
filtered input, defined by

ŷt := B(q, η̂)ut, ût := A(q, η̂)ut. (17)

Using PEM, a non-convex optimization routine is required
to minimize (16). An alternative is to use the Steiglitz-
McBride method (Stoica and Söderström, 1981), which uses
least squares iteratively (we refer to it as Steiglitz-McBride).
This method is not asymptotically efficient when applied to
the measured data (Stoica and Söderström, 1981); however,



when applied to the simulated data set (17), Steiglitz-
McBride provides asymptotically efficient estimates in one
iteration (Everitt et al., 2016).

Motivated by this, the Model Order Reduction Steiglitz-
McBride method consists of the following two steps: first,
estimate a high-order ARX model, using least squares;
second, apply Steiglitz-McBride to the data set (17), which
is motivated by an asymptotic ML criterion.

We identify three advantages compared to a direct PEM
estimation. First, we transform a Box-Jenkins problem into
an OE one, which is computationally simpler. Second, the
user does not need to choose a parametrization for the
noise model. Third, we avoid a non-convex optimization
routine by applying Steiglitz-McBride. These properties
make MORSM an appealing method to estimate systems
in dynamic networks.

4. MORSM FOR DYNAMIC NETWORKS

To generalize MORSM to dynamic networks, consider the
single-input multi-output (SIMO) ARX model from rt to
the input and output signals of G12(q) (the module of
interest), w2

t and w1
t , respectively:

A(q, η)

[
w2
t

w1
t

]
= B(q, η)rt +

[
e1
t

e2
t

]
where A(q, η) is 2× 2 , B(q, η) is 2× 1, and the parameter
vector η contains all the polynomials in these transfer
matrices. An estimate η̂ can then be obtained by least
squares, which allows us to obtain non-parametric estimates[

T̂23(q)

T̂13(q)

]
= A−1(q, η̂)B(q, η̂), (18)

where [
T23(q)
T13(q)

]
:= S(q)

[
G23(q)

G12(q)G23(q)

]
.

Having estimates of T13(q) and T23(q), the asymptotic ML
estimate of G12(q) can be derived from these estimates,
using that they are related by T13(q)−G12(q)T23(q) = 0.
To do this, we start by writing the asymptotic distribution

T̂13(ejω)−G12(ejω)T̂23(ejω) ∼ N
(

0,
n

N

P (ejω, θo)

Φr(ejω)

)
,

(19)
where Φr(e

jω) the spectrum of the reference signal rt and

P (ejω, θ) =
[
−G12(ejω, θ) 1

]
Φv̄(e

iω)

[
−G12(e−jω, θ)

1

]
,

(20)
where Φv̄(e

iω) is the spectrum of the noise signal

v̄t :=

[
w̃2
t

w̃1
t

]
−
[
T23(q)
T13(q)

]
rt. (21)

This suggests that the model reduction step should be
according to the cost function

VN (θ)=

∫ 2π

0

|T̂13(ejω)−G12(ejω, θ)T̂23(ejω)|2 Φr(e
jω)

P (ejω, θo)
dω.

(22)

As with MORSM, we replace Φv̄(e
jω) in (20) by a non-

parametric estimate—that is, the spectrum of the signal

ˆ̄vt =

[
w̃2
t

w̃1
t

]
−
[
T̂23(q)

T̂13(q)

]
rt (23)

instead of (21)—and apply Steiglitz-McBride to perform
the model reduction. However, we have two problems to
address. First, the term P (ejω, θo) depends on the true
parameters θo. Second, a spectral factor of this term is not
available in closed form to simulate the signals.

Concerning the first problem, we replace θo by a consistent
estimate. Because it is an ML criterion, this can be done
without affecting the asymptotic properties of the ML
estimate (Wahlberg, 1989). To obtain a consistent estimate,
we may set P (ejω, θo) in (22) to one and minimize

V 0
N (θ) =

1

N

N∑
t=1

[(
T̂13(ejω)−G12(ejω, θ)T̂23(ejω)

)
rt

]2
.

To do this, we apply Steiglitz-McBride with the data set

ŷ0
t = T̂13(q)rt, û0

t = T̂23(q)rt, (24)

which provides a consistent estimate θ̂ that we use to
replace θo in (22).

Concerning the second problem, a standard approach to

obtain a spectral factorization of P (ejω, θ̂) is to write the
state-space form of the signal

[
G12(q, θ̂) 1

]
ˆ̄vt and compute

the Kalman filter. However, numerical problems might
occur when solving the Riccati equation because of the
potential high order of the model. Because we only need a
non-parametric estimate of the spectral factor, we instead
fit an AR model D(q)x̂t = et using least squares, where

D(q) = 1 +
∑n
k=1dkq

−k, x̂t :=
[
−G12(q, θ̂) 1

]
ˆ̄vt. (25)

Then, if D̂(q) is the AR-model estimate, we have that

|D̂(q)|2 ≈ P−1(ejω, θ̂). Finally, minimizing (22) with this

estimate of P−1(ejω, θ̂) corresponds to minimizing

VN (θ)=
1

N

N∑
t=1

[(
T̂13(ejω)−G12(ejω, θ)T̂23(ejω)

)
D̂(q)rt

]2
,

which provides the final data set for the Steiglitz-McBride:

ŷt := T̂13(q)D̂(q)rt, ût := T̂23(q)D̂(q)rt. (26)

In summary, the MORSM algorithm for networks consists
of the following steps:

(1) estimate an ARX model and construct estimates

T̂13(q) and T̂23(q), according to (18);
(2) apply the Steglitz McBride method to the simulated

data set (24), providing a consistent estimate θ̂;
(3) estimate an AR model from the signal x̂t, defined

by (25) and (23);
(4) apply the Steglitz-McBride method to the simulated

data set (26), with D̂(q) obtained in Step 3.

5. SIMULATION STUDY

In this section, we perform a simulation study covering
three cases with different noise signal spectra. For all cases,
the transfer function we are interested in estimating is

G12(q) =
q−1

1− 0.8q−1
,

while the remaining modules in the network are

G23(q) =
0.2q−1

1− 0.5q−1
, G31(q) =

−0.1q−1

1− 0.4q−1
.



We generate the reference signal by rt = [1− 0.7q−1]−1ert ,
where {ert} is Gaussian white noise with unit variance. The
sample size is N = 5000.

We compare the following methods:

• two-stage method (2-Stage), estimating an FIR model
of order n = 30 (first stage) according to (5) and (6),
and estimating an OE model using PEM (second stage)
with (8) and simulated input (7);
• instrumental variable method (IV), estimating (9)

with zt = [rt−3 rt−4 rt−5]
>

;
• the sample maximum likelihood method (SML), ac-

cording to the implementation in the MATLAB tool-
box (version October 2011) complementing the book
by Pintelon and Schoukens (2012), with 50 degrees of
freedom for the covariance estimate and order 1 for
the local polynomial approximation;
• the proposed method (MORSM), estimating an ARX

model of order n = 15 (first step), an AR model
of order n = 30 (third step), and using 5 Steiglitz-
McBride iterations (second and fourth steps).

For SML, the MIMO local polynomial method is first used
with {rt} as input and {w̃1

t , w̃
2
t } as outputs; then, the

obtained non-parametric frequency-domain estimates of
the latter signals and of the noise covariance are used with
the sample maximum likelihood method. We obtain the
initial estimate for the optimization problem by applying
iterative quadratic maximum likelihood (IQML), which, in
turn, is initialized by weighted total least squares (WTLS)—
functions that are available in the toolbox. A maximum
number of 100 iterations (default) is used.

The settings for all the methods were chosen based on a
few empirical observations regarding performance. In a
more extensive simulation study, a data-based selection of
these settings should be used instead. However, we do not
consider it for the purpose of this preliminary simulation.

For illustrative purposes, it would be interesting to observe
how much is gained from Step 2 to Step 4 of the proposed
method, as well as how much is lost by not using θo

when obtaining the spectral factor. With this purpose,
the following estimates are also included for comparison:

• Step 2 of the proposed method (naive MORSM);
• the proposed method with G12(q, θo) used in Step 3

when constructing (25) (oracle MORSM).

We evaluate the performance using the FIT of the estimated
impulse response of G12(q), given in percent by

FIT = 100

(
1− ||g12 − ĝ12||2
||g12 −mean(g12)||2

)
,

where g12 and ĝ12 are vectors with the impulse coefficients

of G12(q) and G12(q, θ̂) (for a particular method), respec-
tively. We perform 100 Monte Carlo runs.

The three cases we study are:

I) the process and sensor noises are uncorrelated Gaus-
sian white noise sequences with unit variance;

II) the process noise sequences are low-pass signals gen-
erated by vkt = H(q)evkt , k = {1, 2, 3}, where H(q) =
[1− 0.95q−1]−1, and {evkt } are mutually uncorrelated

white Gaussian noise sequences with unit variance,
and the sensor noise sequences are as in Case I).

III) the process noise sequences are as in Case II), and
the sensor noise sequences are generated to have the
same spectra, by skt = H(q)eskt , k = {1, 2, 3}, where
{eskt } are mutually uncorrelated white Gaussian noise
sequences with unit variance.

Although correlation between signals should not affect the
methods, we consider the uncorrelated case for simplicity.

Case I) The results for the case where all noise contri-
butions are white are presented in the left plot of Fig. 2.
In this case, there is hardly any improvement from Step 2
of the proposed method (naive MORSM) to the complete
method (MORSM), which also has little advantage over the
two-stage method (2-Stage). The reason is that the total
noise contribution when driven by white noise signals does
not have a considerable influence, and may be disregarded
at almost no cost in performance. Moreover, there is no
observable difference between the proposed method and
using knowledge of the true system to filter the signals
in Step 3 (oracle MORSM), meaning that our proposal of
replacing the true system in Step 3 by the estimate obtained
in Step 2 is acceptable in this case. The IV method we
use is not competitive with the remaining methods here.
Finally, SML and MORSM have similar performance.

Case II) The results for the case where the process
noise signals are low pass are presented in the middle
plot of Fig. 2. In this case, there is a clear improvement
from naive MORSM to MORSM, while the 2-Stage is
not competitive. Thus, when the noise contributions are
sufficiently correlated in time, performing the filtering
derived from the asymptotic ML approach is beneficial.
Moreover, replacing the true system with a consistent
estimate in the ML weighting does not deteriorate our
approach here either, as MORSM and the oracle version
have identical performance. The IV method we use has
better performance than in the previous case, because it
benefits from additional correlations in the internal network
signals. Like MORSM, the SML method is also capable of
handling the colored noise signals used.

Case III) The results for the case where both the process
and sensor noise signals are low-pass signals are presented
in the right plot of Fig. 2. In this case, the estimate
naive MORSM is very poor, but the improvement to
the complete method is considerable. Also here, MORSM
performs similarly to the case that the true system is used
in Step 3 (oracle MORSM), even if the true system is
replaced by a poor estimate (the one obtained by naive
MORSM). The SML and MORSM are competitive in this
simulation, but 2-Stage and IV are not.

In summary, our simulations suggest that the proposed
method can provide a smaller estimation error than stan-
dard two-stage and IV methods. If the noise contributions
are not sufficiently colored, the two-stage method performs
very similar to the proposed method. With increasingly
colored process noise, IV methods may benefit from ad-
ditional correlations in the internal network signals, but
performance of the two-stage method deteriorates. If also
the sensor noise is highly colored, performance of both
IV and two-stage is affected. Meanwhile, the proposed
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Fig. 2. Simulation studies with three cases: Case I) white process and sensor noise signals (left); Case II) low-pass
process noise signals and white sensor noise signals (middle); Case III) low-pass process and sensor noise signals.

method showed good performance in all the cases studied,
and is competitive with the SML method. More extensive
simulation studies are required to test the robustness and
limitations of the method.

6. CONCLUSION

In this paper, we proposed a method for estimation of
systems in dynamic networks. The method resembles
standard two-stage methods, but we motivate the simulated
signals using asymptotic ML. We argue that this should
decrease the estimation error compared with two-stage and
IV methods, and support this argument with simulations.

The proposed method showed also competitive perfor-
mance with the frequency-domain sample maximum likeli-
hood method. These methods are conceptually similar,
although using different approaches. Besides the time-
and frequency-domain difference, MORSM uses a non-
parametric ARX model to capture the dynamics of the
system, while SML uses the local polynomial method to
obtain a non-parametric estimate of the noise and the
frequency response function. In both cases, the parametric
estimate is motivated by an ML criterion. A more in-depth
comparison between these methods—both theoretical and
experimental—is considered for future work.

To keep the notation simple, we used a specific network
for our discussion. This network has only one external
reference and the output signal we are interested in is
generated only by the module of interest (i.e., the row of
the transfer matrix in (1) containing the module of interest
has no other non-zero entries). If this is not the case, (19)
will be multivariate. Because multivariate asymptotic ML
is covered by Zhu (2001), we can use the results therein to
generalize the proposed method to cover such cases. We
will address this in future work.
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Stoica, P. and Söderström, T. (1981). The Steiglitz-McBride
identification algorithm revisited—convergence analysis
and accuracy aspects. IEEE Transactions on Automatic
Control, 26(3), 712–717.

Thil, S., Gilson, M., and Garnier, H. (2008). On instrumen-
tal variable-based methods for errors-in-variables model
identification. In 17th IFAC World Congress, 426–431.

Van den Hof, P., Dankers, A., Heuberger, P., and Bombois,
X. (2013). Identification of dynamic models in complex
networks with prediction error methods—Basic methods
for consistent module estimates. Automatica, 49(10),
2994–3006.

Van den Hof, P. and Schrama, R. (1993). An indirect
method for transfer function estimation from closed loop
data. Automatica, 29(6), 1523–1527.

Wahlberg, B. (1989). Model reduction of high-order
estimated models: the asymptotic ML approach. In-
ternational Journal of Control, 49(1), 169–192.

Zhu, Y. (2001). Multivariable System Identification for
Process Control. Pergamon.


