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Identification of modules in dynamic networks:
An empirical Bayes approach

Niklas Everitt, Giulio Bottegal, Cristian R. Rojas, and Håkan Hjalmarsson

Abstract— We address the problem of identifying a specific
module in a dynamic network, assuming known topology. We
express the dynamics by an acyclic network composed of two
blocks where the first block accounts for the relation between
the known reference signals and the input to the target module,
while the second block contains the target module. Using
an empirical Bayes approach, we model the first block as a
Gaussian vector with covariance matrix (kernel) given by the
recently introduced stable spline kernel. The parameters of the
target module are estimated by solving a marginal likelihood
problem with a novel iterative scheme based on the Expectation-
Maximization algorithm. Numerical experiments illustrate the
effectiveness of the proposed method.

I. INTRODUCTION

Recently, large interconnected dynamic systems have
gained popularity in the system identification community
[1], [2], [3]. These systems, usually referred to as dynamic
networks, find application in different branches of science,
such as econometrics, systems biology, social science, and
power systems.

In this paper, similarly to [2], we define a dynamic network
as the result of the interconnection of modules, where each
module is a linear time-invariant (LTI) system. The intercon-
necting signals are the outputs of these modules. In a graph
interpretation, the interconnecting signals represent nodes
and the modules represent edges. Moreover, we assume that
exogenous measurable signals may affect the dynamics of
the network.

Two problems arise in dynamic network identification. The
first is unraveling the network topology (i.e., identify the
edges of the graph), and can be seen as a model structure
selection problem. The second is the identification of one or
more specific modules in the network.

Some of the recent papers deal with both the afore-
mentioned problems [4], [5] [1], [6], whereas others are
mainly focused on the identification of a single module,
see [7] [8], [9], [10], [11]. In particular, [7], [2] study
the problem of understanding which of the available output
measurements should be used to obtain a consistent estimate
of a target module. In [9] instead, errors-in-variables dynamic
networks are considered, and methods that lead to consistent
module estimates are proposed. As observed in [2], dynamic
networks with known topology can be seen as a general-
ization of simple compositions, such as cascaded systems
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or closed-loop systems. Therefore, identification techniques
for dynamic networks may be derived by extending methods
already developed for simple structures. This is the idea
underlying the method presented in [2], which generalizes
the two-stage method, originally developed for closed-loop
systems, to dynamic networks [12]. Instrumental variable
methods for closed-loop systems [13] are adapted to net-
works in [9]. Similarly, the methodology proposed in [14]
for the identification of cascaded systems is generalized to
the context of dynamic networks in [8]. Here, the underlying
idea is that a dynamic network can be transformed into an
acyclic structure, where any reference signal of the network
becomes the input to a cascaded system consisting of two
LTI blocks. The first block captures the relation between
the reference and the noisy input of the target module,
the second one contains the target module. The two LTI
blocks are identified simultaneously using the prediction
error method (PEM) [15]. In this setup, determining the
model structure of the first block of the cascaded structure
may be complicated, due to the possibly large number of
interconnections in the dynamic network. Therefore, in [8]
an unstructured FIR model is utilized for the first block. The
major drawback of this approach is that, if the number of
available measurements is small, the estimated FIR model
may suffer of high variance, affecting the accuracy of the
estimated target module.

The objective of this paper is to propose a method for
the identification of a module in dynamic networks that
circumvents the high variance issue. Following a recent trend
in system identification, we use regularization to control
the variance [16]. In particular, exploiting the equivalence
between regularization and Gaussian process regression [17],
we model the impulse response of the first block as a zero-
mean stochastic process. The covariance matrix is given
by the recently introduced first-order stable spline kernel
[18], whose structure is parametrized by two hyperparam-
eters. An estimate of the target module is then obtained by
empirical Bayes (EB) arguments, that is, by maximization
of the marginal likelihood of the available measurements
[17]. This likelihood depends not only on the parameter of
the target module, but also on the kernel hyperparameters
and the variance of the measurement noise. Therefore, it
is required to estimate all these quantities. This is done by
designing a novel iterative solution scheme based on an EM-
type algorithm [19], known as the Expectation/Conditional-
Maximization (ECM) algorithm [20]. Combining the ECM
algorithm with gradient descent strategies, we derive a com-
putationally efficient scheme for solving the marginal likeli-



hood problem, which provides the estimated target module.
The effectiveness of the proposed method is demonstrated
through numerical experiment. The method proposed in this
paper is close in spirit to some recently proposed kernel-
based techniques for blind system identification [21] and
Hammerstein system identification [22].

The paper is organized as follows. In the next section,
we introduce the dynamic network model and we give the
problem statement. In Section III we present the identifica-
tion strategy. In Section IV, we describe the solution scheme
based on the ECM algorithm. Section V reports the results of
a Monte Carlo experiment. Some conclusions end the paper.

II. PROBLEM STATEMENT

A. Dynamic networks

We consider dynamic networks that consist of L scalar
internal variables wj(t), j = 1, . . . , L and L scalar external
reference signals rl(t), l = 1, . . . , L, that can be manipulated
by the user. Some of the reference signal may not be present,
i.e., they may be identically zero. Define R as the set of
indices of reference signals that are present. In the dynamic
network, the internal variables are considered nodes and
transfer functions are the edges. Introducing the vector nota-
tion w(t) := [w1(t) . . . wL(t)]

T , r(t) := [r1(t) . . . rL(t)]
T ,

the dynamics of the network are defined by the equation

w(t) = G(q)w(t) + r(t) , (1)

where

G(q) =


0 G12(q) · · · G1L(q)

G21(q) 0
. . .

...
...

. . . . . . G(L−1)L(q)
GL1(q) · · · GL(L−1)(q) 0

 ,
where Gji(q) is a proper rational transfer function for j =
1, . . . , L, i = 1, . . . , L. The internal variables w(t) are
measured with additive white noise, that is

w̃(t) = w(t) + e(t) ,

where e(t) ∈ RL is a stationary zero-mean Gaussian white-
noise process with diagonal noise covariance matrix Σe =
diag

{
σ2
1 , . . . , σ

2
L

}
. We assume that the σ2

i are unknown. To
ensure stability and causality of the network the following
assumptions hold for all networks considered in this paper.

Assumption 2.1: The network is well posed in the sense
that all principal minors of limz→∞(I −G(z)) are non-zero
[2].

Assumption 2.2: The sensitivity path S(q) is stable

S(q) := (I − G(q))−1 .
Assumption 2.3: The reference variables {rl(t)} are mu-

tually uncorrelated and uncorrelated with the measurement
noise e(t).
Thus, we can write

w̃(t) = S(q)r(t) + e(t) . (2)

We define a Nj as the set of indices of internal variables
that have a direct causal connection to wj , i.e., i ∈ Nj if and
only if Gji(q) 6= 0. Without loss of generality, we assume
that Nj = 1, 2, . . . , p, where p is the number of direct causal
connections to wj (we may always rename the nodes so that
this holds). The goal is to identify module Gj1(q) given N
measurements of the reference r(t), the “output” w̃j(t) and
the set of p neighbor signals in Nj . To this end, we express
w̃j , the measured output of module Gj1(q) as

w̃j(t) =
∑
i∈Nj

Gji(q)wi(t) + rj(t) + ej(t) . (3)

The above equation depends on the internal variables wi(t),
i ∈ Nj , which we we only have noisy measurement of; these
can be expressed as

w̃i(t) = wi(t) + ei(t) =
∑
l∈R

Sil(q)rl(t) + ei(t) . (4)

where Sil(q) is the transfer function path from reference rl(t)
to output w̃i(t). Together, (3) and (4) allows us to express
the relevant part of the network as a direct acyclic graph with
two blocks connected in cascade.

Example 2.1: As an example consider the network de-
picted in Figure 1, where, using (3) and (4), the acyclic
graph of Figure 2 can describe the relevant dynamics, when
wj = w3 is the output and we wish to identify G31(q).

G31
r4 r2

+
w4

G14 +
w1

G21 +
w2

G32 +
w3

G12 G23

G43

Fig. 1: Network example of 4 internal variables and 2
reference signals.

S12(q) S14(q)

S22(q) S24(q)

G31(q)

G32(q)

+ w3

r2

r4

+
w1

+
w2

Fig. 2: Direct acyclic graph of part of the network in Figure 1.

B. A two stage method

The first stage of the two-stage method [2], proceeds by
finding a consistent estimate ŵi(t) of all nodes wi(t) in Nj .
This is done by high-order modeling of {Sil} and estimating
it from (4) using the prediction error method. The prediction
errors are constructed as

εi(t, α) = w̃i(t)−
∑
l∈R

Sil(q, α)rl(t) , (5)



where α is a parameter vector. The resulting estimate
Sil(q, α̂) is then used to obtain the node estimate as

ŵi(t) =
∑
l∈R

Sil(q, α̂)rl(t) . (6)

In a second stage, the module of interest Gj1(q) (and the
other modules in Nj) is parameterized by θ and estimated
from (3), again using the prediction error method. The
prediction errors are now constructed as

εj(t, θ) = w̃j(t)− rj(t)−
∑
i∈Nj

Gji(q, θ)ŵi(t) . (7)

C. Simultaneous minimization of prediction errors

In this section, we briefly introduce the simultaneous
minimization of prediction error method (SMPE) [8]. The
main idea underlying SMPE is that if, the two prediction
errors are simultaneously minimized, the variance will be
decreased [14]. In the SMPE method, the prediction error of
the measurement w̃j depends explicitly on α and is given by

εj(t, θ, α) = w̃j(t)−
∑
i∈Nj

Gji(q, θ)
∑
l∈R

Sil(q, α)rl(t) . (8)

The method proceeds to minimize

VN (θ, α) =
1

N

N∑
t=1

ε2j (t, θ, α)
σ2
j

+
∑
i∈Nj

ε2i (t, α)

σ2
i

 . (9)

As an initial estimate of the parameters θ and α, the
minimizers of the two-stage method can be taken.

The main drawback is that the least-squares estimation
of S may still induce high variance in the estimates. Addi-
tionally, if each of the ns estimated transfer functions in S
is estimated by the first n impulse response coefficients, the
number of estimated parameters in S alone is ns ·n. Already
for relatively small dimensions of S the SMPE method is
prohibitively expensive. To handle this, a frequency domain
approach is taken in [23]. In this paper, we will instead use
regularization to reduce the variance and the complexity.

D. Notation

Given a sequence of scalars {a(t)}mt=1, we denote by a its
vector representation a = [a(1) · · · a(m)]T ∈ <m. Given a
vector a ∈ <m, we define by Tn(a) the m × n Toeplitz
matrix whose elements are the entries of a. Lower case
letters indicate, in general, column vectors and, when there is
no confusion, capital letters indicate their Toeplitz form, so
given a ∈ <m, we have that A = Tn(a), where the number
n of columns is consistent with the rest of the formula. The
symbol “⊗” denotes the standard Kronecker product of two
matrices.

III. EMPIRICAL BAYES ESTIMATION OF THE MODULE

In this section we derive our approach to the identification
of a specific module based on EB. For ease of exposition, we
give a detailed derivation in the one-reference-one-module
case.

We consider a dynamic network with one reference signal
r1(t). Without loss of generality, we assume that the module
of interest is G21(q), and hence G22(q), . . . , G2L(q) are
assumed zero. We parametrize the target module by means of
a parameter vector θ ∈ Rnθ . Using the vector notation intro-
duced in the previous section, we denote by w̃1 the stacked
measurements w̃1(t) before the module of interest G21(q, θ),
and by w̃2 the stacked output of this module w̃2(t). We define
the impulse response coefficients of G21(q, θ) by the inverse
discrete-time Fourier transform

gθ(t) :=

∫ π

−π
G21(e

jω, θ)ejωt dω . (10)

Similarly we define s11 as the impulse response coefficients
of S11(q), where S11(q) is as before the sensitivity path from
r1(t) to w1(t), and e1(t) and e2(t) are the measurement noise
sources (which we have assumed white and Gaussian). Their
variance is denoted by σ2

1 and σ2
2 , respectively. We rewrite

the dynamics as

w̃1 = S11r1 + e1 ,

w̃2 = GθS11r1 + e2 ,
(11)

where Gθ is the N × N Toeplitz matrix (with null initial
conditions) of the N first impulse response gθ. The same
notation holds for the impulse response s11 and its Toeplitz-
matrix version S11 = TN (s11). We further rewrite (11) as

w̃1 = R1s11 + e1 ,

w̃2 = GθR1s11 + e2 .
(12)

where R1 = TN (r1). For computational purposes, we only
consider the first n samples of s11, where n is large enough
to capture the relevant dynamics of the sensitivity S11(q).
Let z := [w̃T1 w̃

T
2 ]
T ; we rewrite (12) as

z =Wθs11 + e , Wθ =

[
R1

GθR1

]
e =

[
e1
e2

]
(13)

Note that e is a random vector such that

Σe := E
[
eeT
]
=

[
σ2
1I 0
0 σ2

2I

]
. (14)

A. Bayesian model of the sensitivity path

To reduce the variance in the sensitivity estimate (and also
reduce the number of estimated parameters), we cast our
problem in a Bayesian framework and model the sensitivity
function as a zero-mean Gaussian stochastic vector, i.e.,

p(s11;λ,Kβ) ∼ N(0, λKβ) . (15)

The structure of the covariance matrix is given by the first-
order stable spline kernel [18]:

{Kβ}i,j = βmax(i,j), β ∈ [0, 1) . (16)

The parameter β regulates the decay velocity of the realiza-
tions from (15), whereas, λ tunes their amplitude.



B. The marginal likelihood estimator

Since s11 is assumed stochastic, it admits a probabilis-
tic description jointly with the vector of observation z,
parametrized by the vector

η =
[
σ2
1 σ2

2 λ β θ
]
. (17)

In particular, having assumed a Gaussian distribution of the
noise, the joint description is also Gaussian, that is,

p

([
z
s11

]
; η

)
∼ N

([
0
0

]
,

[
Σz Σzs
Σsz λKβ

])
, (18)

where Σz =WθλKbW
T
θ +Σe, and Σzs = ΣT

sz =WθλKβ .
It is instrumental to derive the posterior distribution of s11
given the measurement vector z. It is given by

p(s11|z; η) ∼ N(PWT
θ Σ

−1
e z, P ) , (19)

P = (WT
θ Σ

−1Wθ + (λKβ)
−1)−1 , (20)

and it is also parametrized by the vector η.
The module identification strategy we propose in this

paper relies on an EB approach. We introduce the marginal
probability density function (pdf) of the measurements

p(z; η) =

∫
p(z, s11) ds11 ∼ N (0, Σz) , (21)

that is, the pdf of the measurements after having integrating
out the dependence on the sensitivity path s11. Then, we
can define the (log) marginal likelihood (ML) criterion as
the maximum of the marginal pdf defined above

η̂ = argmin
η

(
log detΣz + zTΣ−1z z

)
, (22)

whose solution provides also an estimate of θ and thus of
the module of interest.

IV. COMPUTATION OF THE SOLUTION OF THE MARGINAL
LIKELIHOOD CRITERION

Problem (22) is nonlinear and may involve a large
number of decision variables, if nθ is large. In this sec-
tion, we derive an iterative solution scheme based on
the Expectation/Conditional-Maximization (ECM) algorithm
[20], which is a generalization of the standard Expectation-
Maximization (EM) algorithm. In order to employ EM-
type algorithms, one has to define a latent variable; in our
problem, a natural choice is s11. Then, a (local) solution to
(22) is achieved by iterating over the following steps:
(E-step) Given an estimate η̂(k) (computed at the k-th iter-

ation of the algorithm), compute

Q(k)(η) := E
[
log p(z, s11; η

(k))
]
, (23)

where the expectation is taken with respect to the
posterior of s11 when the estimate η(k) is used, i.e.,
p(s11|z, η̂(k)) ;

(M-step) Solve the problem

η̂(k+1) = argmax
η

Q(k)(η) . (24)

First, we turn our attention on the computation of the E-step,
i.e., the derivation of (23). Let ŝ(k)11 and P̂ (k) be the posterior
mean and covariance matrix of s11, computed from (19)
using η̂(k). Define Ŝ(k)

11 := P̂ (k) + ŝ
(k)
11 ŝ

(k)T
11 . The following

proposition provides an expression for the function Q(k)(η).
Lemma 4.1: Let η̂(k) = [σ

2(k)
1 σ

2(k)
2 λ(k) β(k) θ(k)] be an

estimate of η after the k-th iteration of the EM method. Then

Q(k)(η) = −1

2
Q

(k)
0 (σ2

1 , σ
2
2 , θ)−

1

2
Q(k)
s (λ, β) , (25)

where

Q
(k)
0 (σ2

1 , σ
2
2 , θ) =

(
log detΣe + zTΣ−1e z (26)

−2zTWθ ŝ
(k)
11 +Tr

{
WT
θ Σ

−1
e WθŜ

(k)
11

})
,

Q(k)
s (λ, β) = log detλKβ +Tr

{
(λKβ)

−1
Ŝ
(k)
11

}
. (27)

Having computed the function Q(k)(η), we now focus on
its maximization. We first note that the decomposition (25)
shows that the kernel hyperparameters can be updated inde-
pendently of the rest of the parameters:

Proposition 4.1: Define

Qβ(β) = log detKβ + n log Tr {K−1β Ŝ
(k)
11 }. (28)

Then

β̂(k+1) = argmin
β∈[0,1)

Qβ(β) , (29)

λ̂(k+1) =
1

n
Tr {K−1

β̂(k+1)
Ŝ
(k)
11 } . (30)

Therefore, the update of the scaling hyperparameter is avail-
able in closed-form, while the update of β requires the
solution of a scalar optimization problem in the domain
[0, 1], an operation that requires little computational effort,
see [24] for computational details.

We are left with the maximization of the function
Q

(k)
0 (σ2

1 , σ
2
2 , θ). In order to simplify this step, we split

the optimization problem into constrained subproblems that
involve fewer decision variables. This operation is justi-
fied by the ECM paradigm, which, under mild conditions
[20], guarantees the same convergence properties of the
EM algorithm even when the optimization of Q(k)(η) is
split into a series of constrained subproblems. In our case,
we decouple the update of the noise variances from the
update of θ. By means of the ECM paradigm, we split
the maximization of Q(k)

0 (σ2
1 , σ

2
2 , θ) in a sequence of two

constrained optimization subproblems:

θ̂(k+1) = argmax
θ

Q
(k)
0 (σ2

1 , σ
2
2 , θ) (31)

s.t. σ2
1 = σ

2(k)
1 , σ2

2 = σ
2(k)
2 ,

σ
2(k+1)
1 , σ

2(k+1)
2 = argmax

σ2
1 , σ

2
2

Q
(k)
0 (σ2

1 , σ
2
1 , θ) (32)

s.t. θ = θ̂(k+1) .

The following result provides the solution of the above
problems.



Proposition 4.2: Introduce the matrix D ∈ RN2×N such
that Dw̃1 = vec(TN (a)), for any a ∈ RN . Define

Â(k) = DT (R1Ŝ
(k)
11 R

T
1 ⊗ IN )D , b̂(k) = TN (R1ŝ

(k)
11 )T y . (33)

Then

θ̂(k+1) = argmin
θ

gTθ Â
(k)gθ − 2b̂(k)T gθ . (34)

The closed form updates of the noise variances are as follows

σ̂
2(k+1)
1 =

1

N

(
‖w̃1 −R1ŝ

(k)
11 ‖22 + Tr {R1P̂

(k)RT1 }
)
,

σ̂
2(k+1)
2 =

1

N

(
‖w̃2 −Gθ̂(k+1)R1ŝ

(k)
11 ‖22

+Tr {Gθ̂(k+1)R1P̂
(k)RT1 G

T
θ̂(k+1)}

)
. (35)

Each variance is the result of the sum of one term that
measures the adherence of the identified systems to the data
and one term that compensates for the bias in the estimates
introduced by the Bayesian approach. The update of the
parameter θ involves a (generally) nonlinear least-squares
problem, which can be solved using gradient descent strate-
gies. Note that, in case the impulse response gθ is linearly
parametrized (e.g., it is an FIR system or orthonormal basis
functions are used [25]), then the update of θ is also available
in closed-form.

Example 4.1: Assume that the linear parametrization gθ =
Lθ, L ∈ RN×nθ is used, then

θ̂(k+1) =
(
LT Â(k)L

)−1
LT b̂(k) . (36)

A. Identification algorithm

The proposed method for module identification can be
summarized in the following steps.

1) Find an initial estimate of η̂(0), set k = 0.
2) Compute ŝ(k)11 and P̂ (k) from (19).
3) Update the kernel hyperparameters using (30), (29).
4) Update the vector θ solving (34).
5) Update the noise variances from (35).
6) Check if the algorithm has converged. If not, set k =

k + 1 and go back to step 2.
The method can be initialized in several ways. One option

is to first estimate Ŝ11(q) by an empirical Bayes method
using only r1 and w̃1. Then, ŵ1 is constructed from (6),
using the obtained Ŝ11(q). Finally, G is estimated using the
prediction error method, using ŵ1 as input and w̃2 as output.

V. NUMERICAL EXPERIMENTS

In this section, we present results from a Monte Carlo
simulation of MC = 300 iterations to illustrate the per-
formance of the proposed method, which we abbreviate
as Network Empirical Bayes (NEB). We consider a SISO
system operating in closed loop, where the proposed method
is compared with both the SMPE method and the prediction
error method (PEM). The reference signals used are zero-
mean unit-variance Gaussian white noise. The noise signals
ek are zero-mean Gaussian white noise with variances such
that Var wk/Var ek = 10. The setting of the compared methods
are provided in some more detail below, where the model

TABLE I: Mean of parameter estimates plus/minus one
standard deviation, dynamic network setup.

NEB SMPE θ0

b̂1 .051± 0.005 .052± 0.008 .05
â1 .56 ± 0.09 .57 ± 0.13 .6

b̂2 .089± 0.004 .089± 0.006 .09
â2 .51 ± 0.03 .50 ± 0.05 .5

order of the plant G(q) is known for both the SMPE method
and the proposed NEB method.

NEB: The method is initialized by first estimating Ŝ(q)
by an empirical Bayes method. Using w̃j and ŵ as input
obtained from (6), G is estimated using the pem command
in MATLAB. Then, the iterative method outlined in Sec-
tion IV-A is employed with the stopping criteria ‖ηk+1 −
ηk‖/‖ηk‖ < 10−10.

SMPE: The method is initialized by the two-stage method.
First, Ŝ(q) is estimated by least-squares. Second, G is
estimated using the pem command in MATLAB from ŵ
obtained from (6) and w̃j . Then, a greybox-model is used to
minimize the cost function (9) using the pem command with
the tolerance set to 10−2 and unlimited number of iterations.

The second Monte Carlo simulation compares the NEB
method with the SMPE method on data from the network of
Example 2.1, illustrated in Figure 1, where

G14 = G21 = G43 =
0.4q−1 − 0.5q−2

1 + 0.3q−1

G12 = G23 =
0.4q−1 + 0.5q−2

1 + 0.3q−1

G31 =
b1q
−1

1 + a1q−1
, G32 =

b2q
−1

1 + a2q−1

Two reference signals, r2(t) and r4(t) are available
and N = 200 data samples are used with the goal
to estimate G31(q). In total 6 transfer functions are
estimated, {S12(q), S24(q), S22(q), S24(q), G31(q), G32(q)},
where {S12(q), S24(q), S22(q), S24(q)} are each parameter-
ized by n = 50 impulse response coefficients in both
methods. The modules G31(q) and G32(q)} are parametrized
with 2 parameters each where the true parameters are
θ0 = [b01, a

0
1, b

0
2, a

0
2] = [0.05, 0.6, 0.09, 0.5]. The results

of the experiment seem to confirm that the proposed NEB
method performs better than the SMPE method, with more
consistent performance, cf. Figures 6-7 and Table II. The
mean execution time τ is one order of magnitude slower for
the SMPE method (2557 s) compared to NEB (171 s).

VI. CONCLUSION

In this paper, we have addressed the identification of a
module in dynamic networks with known topology. The
problem is cast as the identification of two systems in series.
The second system corresponds to the target module, while
the first represents the dynamic relation between exogenous
signals and the input to the target module. This system
is modeled following a Bayesian kernel-based approach,
which enables the identification of the target module using
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Fig. 3: Scatter plots of the fits of the impulse response of
G31 obtained by the methods NEB and SMPE at each Monte
Carlo, dynamic network setup.
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Fig. 4: Box plots of the fits of the impulse response of G31,
dynamic network setup.

empirical Bayes arguments. In particular, the target module
is estimated using a marginal likelihood criterion, whose
solution is obtained by a novel iterative scheme designed
through the ECM algorithm. The performance of the method
is evaluated through a numerical experiment. In particular,
as compared to SMPE, the computation time is significantly
reduced and the accuracy is improved.
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