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Abstract: The accuracy of identified linear time-invariant single-input multi-output (SIMO)
models can be improved when the disturbances affecting the output measurements are spatially
correlated. Given a linear parametrization of the modules composing the SIMO structure, we
show that the correlation structure of the noise sources and the model structure of the other
modules determine the variance of a parameter estimate. In particular we show that increasing
the model order only increases the variance of other modules up to a point. We precisely
characterize the variance error of the parameter estimates for finite model orders. We quantify
the effect of noise correlation structure, model structure and signal spectra.

1. INTRODUCTION

Dynamic networks are gaining popularity within the sys-
tem identification community, see e.g., Van den Hof et al.
[2013], Dankers et al. [2013a,b, 2014], Ali et al. [2011],
Materassi et al. [2011], Torres et al. [2014], Haber and
Verhaegen [2014], Gunes et al. [2014], Chiuso and Pil-
lonetto [2012]. A dynamic network is composed of a set
of nodes and edges, where nodes represent signals and
edges represent transfer functions. In this framework, the
user has the freedom to choose which signals to include in
the estimation. However, questions such as how to chose
these signals, and how large the potential is for variance
reduction, have not been extensively studied. For a few
specific network structures, some results are available see
e.g., Gevers et al. [2006], Hägg et al. [2011], Wahlberg et al.
[2009], Everitt et al. [2014], Ramazi et al. [2014].

To understand the potential of including additional signals
in the identification process, we will focus on a special
case of dynamic networks, namely, single-input multi-
output (SIMO) orthonormal basis function models. We
will investigate if, and by how much, an added sensor
improve the accuracy of an estimate of a certain target
transfer function. In particular, we will focus on the role
the correlation structure between noise sources play in
the variance of a module estimate. The assumption of
orthonormal basis function models is not restrictive since
a model consisting of non-orthonormal basis functions can
be transformed to this form by a linear transformation.

In this paper, we assume that the dynamics of the true
system can be accurately described by the model structure,
i.e., the true system lies within the set of models consid-
ered, and thus the bias (systematic) error is zero. Then, the
model error mainly consists of the variance error, which

� This work was partially supported by the Swedish Research Coun-
cil under contract 621-2009-4017, and by the European Research
Council under the advanced grant LEARN, contract 267381.

is caused by disturbances and noise when the model is
estimated using a finite number of input-output samples.
The variance error will be quantified in terms of the noise
covariance matrix, input spectrum and model structure.
The paper also extends some results reported in Bottegal
and Hjalmarsson [2014] to more general model structures.

As we shall see throughout the paper, there are some inter-
esting aspects related to model parametrization and noise
correlation structure. To give a flavor of these aspects, we
will consider the following two output example:

y1(t) = θ1,1u(t− 1) + e1(t),

y2(t) = θ2,2u(t− 2) + e2(t),

where the input u(t) is white noise and ek (k = 1, 2)
is measurement noise. We consider two different types of
measurement noise (uncorrelated with the input). In the
first case, the noise is perfectly correlated. For simplicity,
let us assume that e1(t) = e2(t). As a second case, assume
that e1(t) and e2(t) are independent. For the first case,
it turns out that we can perfectly recover the parameters
θ1,1 and θ2,2. However, in the second case, the accuracy
of the estimate of θ1,1 is not improved by also using the
measurement y2(t). The reason is that, in the first case,
we can construct the noise free equation

y1(t)− y2(t) = θ1,1u(t− 1)− θ2,2u(t− 2)

and we can perfectly recover θ1,1 and θ2,2. However, in the
second case, neither y2(t) nor e2(t) contain information
about e1(t). In this paper we will generalize these obser-
vations to a wider class of SIMO models.

The paper has the following organization: in Section 2 we
define the SIMO model structure under study and provide
an expression for the covariance matrix of the parameter
estimates. Section 3 contains the main results, namely,
novel variance expression for LTI SIMO orthonormal basis
function models. In Section 4, numerical experiments are
presented that illustrate the application of the derived
results. A final discussion ends the paper in Section 5.
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be transformed to this form by a linear transformation.

In this paper, we assume that the dynamics of the true
system can be accurately described by the model structure,
i.e., the true system lies within the set of models consid-
ered, and thus the bias (systematic) error is zero. Then, the
model error mainly consists of the variance error, which

� This work was partially supported by the Swedish Research Coun-
cil under contract 621-2009-4017, and by the European Research
Council under the advanced grant LEARN, contract 267381.

is caused by disturbances and noise when the model is
estimated using a finite number of input-output samples.
The variance error will be quantified in terms of the noise
covariance matrix, input spectrum and model structure.
The paper also extends some results reported in Bottegal
and Hjalmarsson [2014] to more general model structures.

As we shall see throughout the paper, there are some inter-
esting aspects related to model parametrization and noise
correlation structure. To give a flavor of these aspects, we
will consider the following two output example:

y1(t) = θ1,1u(t− 1) + e1(t),

y2(t) = θ2,2u(t− 2) + e2(t),

where the input u(t) is white noise and ek (k = 1, 2)
is measurement noise. We consider two different types of
measurement noise (uncorrelated with the input). In the
first case, the noise is perfectly correlated. For simplicity,
let us assume that e1(t) = e2(t). As a second case, assume
that e1(t) and e2(t) are independent. For the first case,
it turns out that we can perfectly recover the parameters
θ1,1 and θ2,2. However, in the second case, the accuracy
of the estimate of θ1,1 is not improved by also using the
measurement y2(t). The reason is that, in the first case,
we can construct the noise free equation

y1(t)− y2(t) = θ1,1u(t− 1)− θ2,2u(t− 2)

and we can perfectly recover θ1,1 and θ2,2. However, in the
second case, neither y2(t) nor e2(t) contain information
about e1(t). In this paper we will generalize these obser-
vations to a wider class of SIMO models.

The paper has the following organization: in Section 2 we
define the SIMO model structure under study and provide
an expression for the covariance matrix of the parameter
estimates. Section 3 contains the main results, namely,
novel variance expression for LTI SIMO orthonormal basis
function models. In Section 4, numerical experiments are
presented that illustrate the application of the derived
results. A final discussion ends the paper in Section 5.
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the correlation structure between noise sources play in
the variance of a module estimate. The assumption of
orthonormal basis function models is not restrictive since
a model consisting of non-orthonormal basis functions can
be transformed to this form by a linear transformation.

In this paper, we assume that the dynamics of the true
system can be accurately described by the model structure,
i.e., the true system lies within the set of models consid-
ered, and thus the bias (systematic) error is zero. Then, the
model error mainly consists of the variance error, which
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is caused by disturbances and noise when the model is
estimated using a finite number of input-output samples.
The variance error will be quantified in terms of the noise
covariance matrix, input spectrum and model structure.
The paper also extends some results reported in Bottegal
and Hjalmarsson [2014] to more general model structures.

As we shall see throughout the paper, there are some inter-
esting aspects related to model parametrization and noise
correlation structure. To give a flavor of these aspects, we
will consider the following two output example:

y1(t) = θ1,1u(t− 1) + e1(t),

y2(t) = θ2,2u(t− 2) + e2(t),

where the input u(t) is white noise and ek (k = 1, 2)
is measurement noise. We consider two different types of
measurement noise (uncorrelated with the input). In the
first case, the noise is perfectly correlated. For simplicity,
let us assume that e1(t) = e2(t). As a second case, assume
that e1(t) and e2(t) are independent. For the first case,
it turns out that we can perfectly recover the parameters
θ1,1 and θ2,2. However, in the second case, the accuracy
of the estimate of θ1,1 is not improved by also using the
measurement y2(t). The reason is that, in the first case,
we can construct the noise free equation

y1(t)− y2(t) = θ1,1u(t− 1)− θ2,2u(t− 2)

and we can perfectly recover θ1,1 and θ2,2. However, in the
second case, neither y2(t) nor e2(t) contain information
about e1(t). In this paper we will generalize these obser-
vations to a wider class of SIMO models.

The paper has the following organization: in Section 2 we
define the SIMO model structure under study and provide
an expression for the covariance matrix of the parameter
estimates. Section 3 contains the main results, namely,
novel variance expression for LTI SIMO orthonormal basis
function models. In Section 4, numerical experiments are
presented that illustrate the application of the derived
results. A final discussion ends the paper in Section 5.
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G1(q) Σ

e1(t) y1(t)

...
u(t)

Gk(q) Σ

ek(t) yk(t)

...

Gm(q) Σ

em(t) ym(t)

Fig. 1. Block scheme of the linear SIMO system.

2. SIMO MODELLING AND IDENTIFICATION

We consider linear time-invariant dynamic systems with
one input and m outputs (see Fig. 1). The model is
described as follows:



y1(t)
y2(t)
...

ym(t)


 =




G1(q)
G2(q)

...
Gm(q)


u(t) +




e1(t)
e2(t)
...

em(t)


, (1)

where q denotes the forward shift operator, i.e., qu(t) =
u(t + 1) and the Gi(q) are causal stable rational transfer
functions. The Gi are modeled as

Gi(q, θi) = Γi(q)θi, θi ∈ Rni, i = 1, . . . ,m, (2)

where, without loss of generality, n1 ≤ . . . ≤ nm and
Γi(q) = [B1(q), . . . ,Bni

(q)], for some orthonormal basis
functions {Bk(q)}nm

k=1. Here, orthogonality is defined with
respect to the scalar product defined for complex functions
f(z), g(z) : C → C1×m as 〈f, g〉 := 1

2π

∫ π

−π
f(eiω)g∗(eiω) dω.

Let us introduce the vector notation

y(t) :=




y1(t)
y2(t)
...

ym(t)


, e(t) :=




e1(t)
e2(t)
...

em(t)


.

The noise sequence {e(t)} is zero mean and temporally
white, but may be correlated in the spatial domain:

E [e(t)] = 0

E
[
e(t)e(s)T

]
= δt−sΛ (3)

for some positive definite matrix covariance matrix Λ, and
where E [·] is the expectation operator. We express Λ in
terms of its Cholesky factorization

Λ = ΛCHΛT
CH , (4)

where ΛCH ∈ Rm×m is lower triangular, i.e.,

ΛCH =




γ11 0 . . . 0
γ21 γ22 . . . 0
... . . .

. . . 0
γm1 γm2 . . . γmm


 (5)

for some {γij}. Also notice that since Λ > 0,

Λ−1 = Λ−T
CHΛ−1

CH . (6)

We summarize the assumptions on input, noise and model
as follows:

Assumption 1. The input {u(t)} is zero mean stationary
white noise with finite moments of all orders, and variance
σ2 > 0. The noise {e(t)} is zero mean and temporally

white, i.e, (3) holds with Λ > 0. It is assumed that
E
[
|e(t)|4+ρ

]
< ∞ for some ρ > 0. The data is generated

in open loop, that is, the input {u(t)} is independent of
the noise {e(t)}. The true input-output behavior of the
data generating system can be captured by our model
structure, i.e., the true system can be described by (1)
and (2) for some parameters θoi ∈ Rni , i = 1, . . . ,m, where
n1 ≤ . . . ≤ nm. The orthonormal basis functions {Bk(q)}
are assumed stable. �

2.1 Weighted least-squares estimate

By introducing θ =
[
θT1 , . . . , θ

T
m

]T ∈ Rn, n :=
∑m

i=1 ni and
the n×m transfer function matrix

Ψ̃(q) :=



ΓT
1 0 0

0
. . . 0

0 0 ΓT
m


,

we can write the model (1) as a linear regression model

y(t) = ϕT (t)θ + e(t), (7)

where

ϕT (t) = Ψ̃(q)Tu(t).

A consistent and unbiased estimate of the parameter
vector θ can be obtained from weighted least-squares, with
weighting matrix Λ−1 giving the linear unbiased estimator
with lowest variance (see, e.g., Ljung [1999], Söderström
and Stoica [1989]). The covariance Λ is assumed known,
however, this assumption is not restrictive since Λ can
be estimated from data and replacing Λ by a consistent
estimate does not affect the asymptotic covariance of θ̂
[Cox and Reid 1987]. The estimate of θ is given by

θ̂N =

(
N∑
t=1

ϕ(t)Λ−1ϕT (t)

)−1 N∑
t=1

ϕ(t)Λ−1y(t). (8)

Inserting (7) in (8) gives

θ̂N = θ +

(
N∑
t=1

ϕ(t)Λ−1ϕT (t)

)−1 N∑
t=1

ϕ(t)Λ−1e(t).

Under Assumption 1, the noise sequence is zero mean,
hence θ̂N is unbiased. It can be noted that this is the
same estimate as the one obtained by the prediction error
method and, if the noise is Gaussian, by the maximum
likelihood method [Ljung 1999]. It also follows that the
asymptotic covariance matrix of the parameter estimates
is given by

AsCov θ̂N =
(
E
[
ϕ(t)Λ−1ϕT (t)

])−1
. (9)

Here AsCov θ̂N is the asymptotic covariance matrix of
the parameter estimates, in the sense that the asymptotic
covariance matrix of a stochastic sequence {fN}∞N=1, fN ∈
C1×q is defined as 1

AsCov fN := lim
N→∞

N · E [(fN − E [fN ])∗(fN − E [fN ])].

In our problem, using Parseval’s formula and (6), the
asymptotic covariance matrix, (9), can be written as 2

1 This definition is slightly non-standard in that the second term
is usually conjugated. For the standard definition, in general, all
results have to be transposed, however, all results in this paper are
symmetric.
2 Non-singularity of 〈Ψ, Ψ〉 usually requires parameter identifiability
and persistence of excitation [Ljung 1999].
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AsCov θ̂N =

[
1

2π

∫ π

−π

Ψ(ejω)Ψ∗(ejω) dω

]−1

= 〈Ψ, Ψ〉−1
, (10)

where

Ψ(q) =
1

σ
Ψ̃(q)Λ−T

CH . (11)

Note that Ψ(q) is block upper triangular since Ψ̃(q) is block

diagonal and Λ−T
CH is upper triangular.

3. MAIN RESULTS

In this section, we present expressions for the variance
error of an estimated frequency response function and
we also present expressions for the covariance between
transfer function estimates. In the derived expressions, it is
clear how the noise correlation structure, model orders and
input variance affect the variance error. Before presenting
our results for SIMO models, we need to introduce some
concepts which will be used to understand those results.

3.1 Non-estimable part of the noise

Strong noise correlation may reduce the variance of an
estimated module, as demonstrated by the introductory
example. In fact, the variance error will depend on the non-
estimable part of the noise, i.e., the part of the noise that
cannot be linearly estimated from other noise sources. To
be more specific, define the signal vector ej\i(t) to include
the noise sources from module 1 to module j, with the one
from module i excluded, i.e.,

ej\i(t) :=




[e1(t), . . . , ej(t)]
T

j < i,

[e1(t), . . . , ei−1(t)]
T

j = i,

[e1(t), . . . , ei−1(t), ei+1(t), . . . , ej(t)]
T

j > i.

Now, the linear minimum variance estimate of ei given
ej\i(t), is given by

êi|j(t) := �Tijej\i(t), (12)

where the vector �ij in (12) is given by

�ij =
[
Cov ej\i(t)

]−1
E
[
ej\i(t)ei(t)

]
.

Introduce the notation

λi|j := Var [ei(t)− êi|j(t)], (13)

with the convention that λi|0 := λi. We call

ei(t)− êi|j(t)

the non-estimable part of ei(t) given ej\i(t).

Definition 2. When êi|j(t) does not depend on ek(t),
where 1 ≤ k ≤ j, k �= i, we say that ei(t) is orthogonal to
ek(t) conditionally to ej\i(t).

The variance of the non-estimable part of the noise is
closely related to the Cholesky factor of the covariance
matrix Λ. We have the following lemma.

Lemma 3. Let e(t) ∈ Rm have zero mean and covariance
matrix Λ > 0. Let ΛCH be the lower triangular Cholesky
factor of Λ, i.e., ΛCH satisfies (4), with {γik} as its entries
as defined by (5). Then for j < i,

λi|j =
i∑

k=j+1

γ2
ik.

Furthermore, γij = 0 is equivalent to that ei(t) is orthog-
onal to ej(t) conditionally to ej\i(t).

Proof. See Everitt et al. [2015]. �

As a small example of why this formulation is useful,
consider the covariance matrix below, where there is cor-
relation between any pair (ei(t), ej(t)):

Λ =

[
1 0.6 0.9
0.6 1 0.54
0.9 0.54 1

]
=

[
1 0 0
0.6 0.8 0
0.9 0 0.44

]

︸ ︷︷ ︸
ΛCH

[
1 0.6 0.9
0 0.8 0
0 0 0.44

]
.

From the Cholesky factorization above we see that, since
γ32 is zero, Lemma 3 gives that e3(t) is orthogonal to e2(t)
conditionally to e2\3(t), i.e., there is no information about
e3(t) in e2(t) if we already know e1(t). This is not apparent
from Λ where every entry is non-zero. If we know e1(t)
a considerable part of e2(t) and e3(t) can be estimated.
Without knowing e1(t), λ1 = λ2 = λ3 = 1, while if we
know e1(t), λ2|1 = 0.64 and λ3|1 = 0.19.

Similar to the above, for i ≤ m, we also define

ei:m(t) := [ei(t) . . . em(t)]
T
,

and for j < i we define êi:m|j(t) as the linear minimum
variance estimate of ei:m(t) based on the signals in ej\i(t),
i.e.,

êi:m|j(t) :=
[
êi|j(t) . . . êm|j(t)

]T
.

Furthermore, we define

Λi:m|j := Cov [ei:m(t)− êi:m|j(t)].

3.2 Variance results for SIMO models

We are now ready to present the results on the variance
error of the estimated frequency response function and for
the covariance between transfer function estimates. To this
end, collect all m transfer functions into

G := [G1 G2 . . . Gm] .

For convenience, we will simplify notation according to the
following definition:

Definition 4. The asymptotic covariance of Ĝ(ejω0) :=
G(ejω0 , θ̂N ) for the fixed frequency ω0 is denoted by

AsCov Ĝ.

In particular, the variance of Ĝi(e
jω0) := Gi(e

jω0 , θ̂Ni ) for
the fixed frequency ω0 is denoted by

AsVar Ĝi.

Define χk as the index of the first system model that
contains the basis function Bk(e

jω0). Notice that, because
of the ordering of the modules, χk − 1 is the number of
system models that do not contain the k-th basis function.

Let the entries of θ be arranged as follows:

θ̄ = [θ1,1 . . . θm,1 θ1,2 . . . θm,2 . . . θ1,n1 . . .

. . . θm,n1
θ2,n1+1 . . . θm,n1+1 . . . θm,nm

]
T
. (14)

and the corresponding weighted least-squares estimate be

denoted by ˆ̄θ.

Theorem 5. Let Assumption 1 hold. Suppose that the
parameters θi ∈ Rni , i = 1, . . . ,m, are estimated using

weighted least-squares (8). Then, the covariance of ˆ̄θ is

AsCov ˆ̄θ =
1

σ2
diag(Λ1:m, Λχ2:m|χ2−1, . . . ,

. . . , Λχnm :m|χnm−1). (15)
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where 1 ≤ k ≤ j, k �= i, we say that ei(t) is orthogonal to
ek(t) conditionally to ej\i(t).

The variance of the non-estimable part of the noise is
closely related to the Cholesky factor of the covariance
matrix Λ. We have the following lemma.

Lemma 3. Let e(t) ∈ Rm have zero mean and covariance
matrix Λ > 0. Let ΛCH be the lower triangular Cholesky
factor of Λ, i.e., ΛCH satisfies (4), with {γik} as its entries
as defined by (5). Then for j < i,

λi|j =
i∑

k=j+1

γ2
ik.

Furthermore, γij = 0 is equivalent to that ei(t) is orthog-
onal to ej(t) conditionally to ej\i(t).

Proof. See Everitt et al. [2015]. �

As a small example of why this formulation is useful,
consider the covariance matrix below, where there is cor-
relation between any pair (ei(t), ej(t)):

Λ =

[
1 0.6 0.9
0.6 1 0.54
0.9 0.54 1

]
=

[
1 0 0
0.6 0.8 0
0.9 0 0.44

]

︸ ︷︷ ︸
ΛCH

[
1 0.6 0.9
0 0.8 0
0 0 0.44

]
.

From the Cholesky factorization above we see that, since
γ32 is zero, Lemma 3 gives that e3(t) is orthogonal to e2(t)
conditionally to e2\3(t), i.e., there is no information about
e3(t) in e2(t) if we already know e1(t). This is not apparent
from Λ where every entry is non-zero. If we know e1(t)
a considerable part of e2(t) and e3(t) can be estimated.
Without knowing e1(t), λ1 = λ2 = λ3 = 1, while if we
know e1(t), λ2|1 = 0.64 and λ3|1 = 0.19.

Similar to the above, for i ≤ m, we also define

ei:m(t) := [ei(t) . . . em(t)]
T
,

and for j < i we define êi:m|j(t) as the linear minimum
variance estimate of ei:m(t) based on the signals in ej\i(t),
i.e.,

êi:m|j(t) :=
[
êi|j(t) . . . êm|j(t)

]T
.

Furthermore, we define

Λi:m|j := Cov [ei:m(t)− êi:m|j(t)].

3.2 Variance results for SIMO models

We are now ready to present the results on the variance
error of the estimated frequency response function and for
the covariance between transfer function estimates. To this
end, collect all m transfer functions into

G := [G1 G2 . . . Gm] .

For convenience, we will simplify notation according to the
following definition:

Definition 4. The asymptotic covariance of Ĝ(ejω0) :=
G(ejω0 , θ̂N ) for the fixed frequency ω0 is denoted by

AsCov Ĝ.

In particular, the variance of Ĝi(e
jω0) := Gi(e

jω0 , θ̂Ni ) for
the fixed frequency ω0 is denoted by

AsVar Ĝi.

Define χk as the index of the first system model that
contains the basis function Bk(e

jω0). Notice that, because
of the ordering of the modules, χk − 1 is the number of
system models that do not contain the k-th basis function.

Let the entries of θ be arranged as follows:

θ̄ = [θ1,1 . . . θm,1 θ1,2 . . . θm,2 . . . θ1,n1 . . .

. . . θm,n1
θ2,n1+1 . . . θm,n1+1 . . . θm,nm

]
T
. (14)

and the corresponding weighted least-squares estimate be

denoted by ˆ̄θ.

Theorem 5. Let Assumption 1 hold. Suppose that the
parameters θi ∈ Rni , i = 1, . . . ,m, are estimated using

weighted least-squares (8). Then, the covariance of ˆ̄θ is

AsCov ˆ̄θ =
1

σ2
diag(Λ1:m, Λχ2:m|χ2−1, . . . ,

. . . , Λχnm :m|χnm−1). (15)
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In particular, the covariance of the parameters related to
the k-th basis function is given by

AsCov ˆ̄θk =
1

σ2
Λχk:m|χk−1, (16)

where
ˆ̄θk =

[
θ̂χk,k . . . θ̂m,k

]T
,

and where, for χk ≤ i ≤ m,

AsVar θ̂i,k =
λi|χk−1

σ2
. (17)

Proof. See Everitt et al. [2015]. �

3.3 Interpretation of Theorem 5

It is clear that from Theorem 5 and Remark 7 that the
covariance of the transfer function estimates in Ĝ, is decou-
pled in terms of the basis functions Bk. In this section, we
will try to give some intuition why this decoupling appears.
It turns out that the orthogonal basis functions introduces
a decomposition of the output signals into uncorrelated
components and decouples the problem. As an example,
consider the system described by:

y1(t) = θ1,1B1(q)u(t) + e1(t),

y2(t) = θ2,1B1(q)u(t) + e2(t),

y3(t) = θ3,1B1(q)u(t) + θ3,2B2(q)u(t) + e3(t). (18)

Suppose that we are interested in estimating θ3,2. For this
parameter, (17) becomes

AsVar θ̂3,2 =
λ3|2
σ2

(19)

To understand the mechanisms behind this expression,
let u1(t) = B1(q)u(t), and u2(t) = B2(q)u(t) so that
the system can be visualized as in Figure 2, i.e., we can
consider u1 and u2 as separate inputs.

First we observe that it is only y3 that contains information
about θ3,2, and the term θ3,1u1 contributing to y3 is a
nuisance from the perspective of estimating θ3,2. This
term vanishes when u1 = 0 and we will not be able to
achieve better accuracy than the optimal estimate of θ3,2
for this idealized case. So let us study this setting first.
Straightforward application of the least-squares method,
using u2 and y3, gives an estimate of θ3,2 with variance
λ/σ2, which is larger than (19) when e3 depends on e1 and
e2. However, in this idealized case, y1 = e1 and y2 = e2,
and these signals can thus be used to estimate e3. This
estimate can then be subtracted from y3 before the least-
squares method is applied. The remaining noise in y3 will
have variance λ3|2, if e3 is optimally estimated (see (12)–
(13)), and hence the least-squares estimate will now have
variance λ3|2/σ2, i.e., the same as (19).

To understand why it is possible to achieve the same
accuracy as this idealized case when u1 is non-zero, we
need to observe that our new inputs u1(t) and u2(t) are
orthogonal (uncorrelated) 3 . Returning to the case when
only the output y3 is used for estimating θ3,2, this implies
that we pay no price for including the term θ3,1u1 in our
model, and then estimating θ3,1 and θ3,2 jointly, i.e., the

variance of θ̂3,2 will still be λ/σ2 4 . The question now is

3 This since u(t) is white and B1 and B2 are orthonormal.
4 With u1 and u2 correlated, the variance will be higher, see Ramazi
et al. [2014], Everitt et al. [2015] for a further discussion of this topic.

if we can use y1 and y2 as before to estimate e3. Perhaps
surprisingly, we can use the same estimate as when u1 was
zero. The reader may object that this estimate will now,
in addition to the previous optimal estimate of e3, contain
a term which is a multiple of u1. However, due to the
orthogonality between u1 and u2, this term will only affect
the estimate of θ3,1 (which we anyway were not interested
in, in this example), and the accuracy of the estimate of
θ3,2 will be λ3|2/σ2, i.e. (19). Figure 3 illustrates the setting
with ỹ3 denoting y3 subtracted by the optimal estimate
of e3. In the figure, the new parameter θ̃3,1 reflects that
the relation between u1 and ỹ3 is different from θ3,1 as
discussed above. A key insight from this discussion is that
for the estimate of a parameter in the path from input i
to output j, it is only outputs that are not affected by
input i that can be used to estimate the noise in output j;
when this particular parameter is estimated, using outputs
influenced by input i will introduce a bias, since the noise
estimate will then contain a term that is not orthogonal
to this input. In (17), this manifests itself in that the
numerator is λi|χk−1, only the χk − 1 first systems do not
contain ui.

θ1,1 Σ

e1(t) y1(t)

u1(t)
θ2,1 Σ

e2(t) y2(t)

θ3,1 Σ

e3(t) y3(t)

u2(t)
θ3,2

Fig. 2. The SIMO system of Remark 3.3, described by (18).

3.4 Variance of the transfer function estimates

We now turn our attention to the variance of the individual
transfer function estimates.

Corollary 6. Let the same assumptions as in Theorem 5
hold. Then, for any frequency ω0, it holds that

AsCov Ĝ =

nm∑
k=1

[
0χk−1 0

0 AsCov ˆ̄θk

]
|Bk(e

jω0)|2, (20)

where AsCov ˆ̄θk is given by (16) and 0χk−1 is a (χk −
1) × (χk − 1) matrix with all entries equal to zero. For
χk = 1, 0χk−1 is an empty matrix. In (20), 0 denotes zero
matrices of dimensions compatible to the diagonal blocks.
It also holds that

AsVar Ĝi =

ni∑
k=1

|Bk(e
jω0)|2AsVar θ̂i,k, (21)

where

AsVar θ̂i,k =
λi|χk−1

σ2
, (22)
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θ1,1 Σ

e1(t)

y1(t)

u1(t)
θ2,1 Σ

e2(t)

y2(t)

u1(t)
θ̃3,1 Σ

e3(t)− ê3|2(t)

ỹ3(t)

u2(t)
θ3,2

Fig. 3. The SIMO system of Remark 3.3, described by (18),
but with ỹ3 denoting y3 subtracted by the optimal
estimate of e3 and θ̃3,1 reflects that the relation
between u1 and ỹ3 is different from θ3,1.

and λi|j is defined in (13).

Proof. See Everitt et al. [2015]. �

Remark 7. The covariance of ˆ̄θk, which contains the pa-
rameters related to the k-th basis function, is determined
by which other models share the basis function Bk. The
asymptotic covariance of Ĝ can be understood as a sum
of the contributions from each of the nm basis functions.
The covariance contribution from a basis function Bk is
weighted by |Bk(e

jω0)|2 and only affects the covariance
between systems that contain that basis function, as visu-
alized in Figure 4.

AsCov ˆ̃θ1 |B1(e
iω)|2

AsCov ˆ̃θk |Bk(e
iω)|2

AsCov ˆ̃θnm |Bnm(e
iω)|2

...

...

Fig. 4. A graphical representation of AsCov Ĝ where each
term of the sum in (20) is represented by a layer.
A basis function only affects the covariance between
modules that also contain that basis function. Thus,
the first basis function affects the complete covariance
matrix while the last basis function nm only affects
modules χnm

, . . . ,m.

From Corollary 6, we can tell when increasing the model
order of Gj will increase the asymptotic variance of Ĝi.

Corollary 8. Under the same conditions as in Theorem 5,
if we increase the number of estimated parameters of Gj

from nj to nj + 1, the asymptotic variance of Gi will
increase, if and only if all the following conditions hold:

(1) nj < ni,
(2) ei(t) is not orthogonal to ej(t) conditionally to ej\i(t),
(3) |Bnj+1(e

jω0)|2 �= 0.

Proof. See Everitt et al. [2015]. �

Remark 9. Corollary 8 explicitly tells when an increased
in the model order of Gj from nj to nj+1 will increase the
variance of Gi. If nj ≥ ni, there will be no increase in the
variance of Gi, no matter how many additional parameters
we introduce to the model Gj because Gi do not contain
any of the basis functions introduced. Naturally, if ei(t)
is orthogonal to ej(t) conditionally to ej\i(t), êi|j(t) does
not depend on ej(t) and there is no increase in variance

of Ĝi. Similarly, if the basis function Bnj+1(e
jω0) is zero,

while the variance of the corresponding parameter θ̂i,nj+1

increases, the variance of Ĝi remain the same.

4. NUMERICAL EXAMPLES

In this section, the effect of Corollary 8 is illustrated in
Figure 5, where the following systems are identified using
N = 500 input-output measurements:

Gi = Γ̃iθi, Γ̃i(q) = F (q)−1Γi(q),

Γi(q) = [B1(q), . . . ,Bni
(q)] , Bk(q) = q−k, (23)

for i = 1, 2, 3 with

F (q) =
1

1− 0.8q−1
, θ01 = [1 0.5 0.7]

T
,

θ02 = [1 −1 2]
T
, θ03 = [1 1 2 1 1]

T
.

The input u(t) is drawn from a Gaussian distribution
with variance σ2 = 1, filtered by F (q). The measurement
noise is normally distributed with covariance matrix Λ =
ΛCHΛT

CH , where

ΛCH =

[
1 0 0
0.6 0.8 0
0.7 0.7 0.1

]
,

thus λ1 = λ2 = λ3 = 1. The sample variance is computed
using

Cov θ̂s =
1

MC

MC∑
k=1

|G3(e
jω0 , θ03)−G3(e

jω0 , θ̂3)|2,

where MC = 2000 is the number of realizations of the
input and noise. The same realizations of the input and
noise are used for all model orders.

The variance of G3(e
jω, θ̂3) increases with increasing ni,

i = 1, 2, but only up to the point where ni = n3 = 5.
After that, any increase in n1 or n2 does not increase

the variance of G3(e
jω, θ̂3), as can be seen in Figure 5.

The behavior can be explained by Corollary 8: when n3 ≥
n1, n2, G3 is the last module, having the highest number
of parameters, and any increase in n1, n2 increases the
variance of G3. When for example n1 ≥ n3, the modules
should be reordered so that G3 comes before G1. In this
case, when n1 increases the first condition of Corollary 8

does not hold and hence the variance of G3(e
jω, θ̂3) does

not increase further.
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between u1 and ỹ3 is different from θ3,1.

and λi|j is defined in (13).

Proof. See Everitt et al. [2015]. �

Remark 7. The covariance of ˆ̄θk, which contains the pa-
rameters related to the k-th basis function, is determined
by which other models share the basis function Bk. The
asymptotic covariance of Ĝ can be understood as a sum
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matrix while the last basis function nm only affects
modules χnm

, . . . ,m.

From Corollary 6, we can tell when increasing the model
order of Gj will increase the asymptotic variance of Ĝi.

Corollary 8. Under the same conditions as in Theorem 5,
if we increase the number of estimated parameters of Gj

from nj to nj + 1, the asymptotic variance of Gi will
increase, if and only if all the following conditions hold:

(1) nj < ni,
(2) ei(t) is not orthogonal to ej(t) conditionally to ej\i(t),
(3) |Bnj+1(e

jω0)|2 �= 0.

Proof. See Everitt et al. [2015]. �

Remark 9. Corollary 8 explicitly tells when an increased
in the model order of Gj from nj to nj+1 will increase the
variance of Gi. If nj ≥ ni, there will be no increase in the
variance of Gi, no matter how many additional parameters
we introduce to the model Gj because Gi do not contain
any of the basis functions introduced. Naturally, if ei(t)
is orthogonal to ej(t) conditionally to ej\i(t), êi|j(t) does
not depend on ej(t) and there is no increase in variance

of Ĝi. Similarly, if the basis function Bnj+1(e
jω0) is zero,

while the variance of the corresponding parameter θ̂i,nj+1

increases, the variance of Ĝi remain the same.

4. NUMERICAL EXAMPLES

In this section, the effect of Corollary 8 is illustrated in
Figure 5, where the following systems are identified using
N = 500 input-output measurements:

Gi = Γ̃iθi, Γ̃i(q) = F (q)−1Γi(q),

Γi(q) = [B1(q), . . . ,Bni
(q)] , Bk(q) = q−k, (23)

for i = 1, 2, 3 with

F (q) =
1

1− 0.8q−1
, θ01 = [1 0.5 0.7]

T
,

θ02 = [1 −1 2]
T
, θ03 = [1 1 2 1 1]

T
.

The input u(t) is drawn from a Gaussian distribution
with variance σ2 = 1, filtered by F (q). The measurement
noise is normally distributed with covariance matrix Λ =
ΛCHΛT

CH , where

ΛCH =

[
1 0 0
0.6 0.8 0
0.7 0.7 0.1

]
,

thus λ1 = λ2 = λ3 = 1. The sample variance is computed
using

Cov θ̂s =
1

MC

MC∑
k=1

|G3(e
jω0 , θ03)−G3(e

jω0 , θ̂3)|2,

where MC = 2000 is the number of realizations of the
input and noise. The same realizations of the input and
noise are used for all model orders.

The variance of G3(e
jω, θ̂3) increases with increasing ni,

i = 1, 2, but only up to the point where ni = n3 = 5.
After that, any increase in n1 or n2 does not increase

the variance of G3(e
jω, θ̂3), as can be seen in Figure 5.

The behavior can be explained by Corollary 8: when n3 ≥
n1, n2, G3 is the last module, having the highest number
of parameters, and any increase in n1, n2 increases the
variance of G3. When for example n1 ≥ n3, the modules
should be reordered so that G3 comes before G1. In this
case, when n1 increases the first condition of Corollary 8

does not hold and hence the variance of G3(e
jω, θ̂3) does

not increase further.
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Fig. 5. Sample variance of G3(e
jω, θ̂3) as a function of the

number of estimated parameters of G1 and G2.

5. CONCLUSIONS

In this paper, we have investigated how the accuracy of an
identified linear SIMO model depends on the correlation
structure of the noise and model structure and model
order. We have quantified the asymptotic covariance of
the frequency response function estimate and the model
parameters, for a linear-in-the-parameter model structure,
in the case of temporally white, but possibly spatially
correlated additive noise. Modules estimated with less
parameters lead to a reduction of the variance of other
modules since parts of the noise can be linearly estimated
from measurement of the first modules. It is shown that
the order of the different modules and the noise correlation
affect the variance of one module. In particular, the vari-
ance of the module of interest levels off when the number
of estimated parameters in another module reaches the
number of estimated parameters of the module of interest.
We have illustrated this aspect with numerical simulations.
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