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On the Variance Analysis of identified Linear MIMO Models

Niklas Everitt, Giulio Bottegal, Cristian R. Rojas and Håkan Hjalmarsson

Abstract— We study the accuracy of identified linear time-
invariant multi-input multi-output (MIMO) systems. Under a
stochastic framework, we quantify the effect of the spatial
correlation and choice of model structure on the covariance
matrix of the transfer function estimates. In particular, it
is shown how the variance of a transfer function estimate
depends on signal properties and model orders of other modules
composing the MIMO system.

Index Terms— System identification, Asymptotic variance,
Linear MIMO models, Least-squares.

I. INTRODUCTION

Modern control systems for industrial plants are based on
mathematical models of the plant dynamics. These control
systems need to handle several decision variables (input sig-
nals), having access, through sensing devices, to a possibly
large number of measured variables (output signals). The
whole structure can be modeled as a multi-input multi-output
(MIMO) system and its identification is a crucial task. In
particular, assessing the quality of the identified model by
quantifying model uncertainties is an important aspect that
must be taken into account when designing model-based and
robust control schemes [1].

We focus on quantifying these model uncertainties in
the identification of MIMO systems, where each system
module is expressed as the linear combination of (known)
basis functions and where the linear coefficients are un-
known. Adopting a stochastic framework, we assume that
measurements are corrupted by additive noise, with a given
probabilistic description.

We assume the system is in the model set and study the
accuracy of the identified model in terms of the parameter
error covariance matrix [2]. Our aim is to understand how
the experimental conditions and model structure influence
this covariance matrix. To this end, we simplify our analysis
by assuming that the input signals are temporally white, but
may be spatially correlated. We make a similar assumption
for the output noise. Under these conditions, we derive
an insightful expression for the parameter error covariance
matrix. In particular, we characterize the behavior of this
covariance matrix in terms of the input and noise correlation
matrices and the model orders of the modules composing
the MIMO system. Our results show that the combination
of suitable input and noise correlation structures and proper
model orders of the modules, may significantly improve the
accuracy of the estimated model for a specific module. This
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LEARN, contract 267381, and in part by the Swedish Research Council
under contract 621-2009-4017.

G

u1

u2

um

y1

y2

yp

+

+

+

...
...

e1

e2

ep

Fig. 1. Block scheme of the linear MIMO system.

has important implications in experiment design for MIMO
systems [3] and fault-detection and diagnosis [4].

In the literature, there are readily available formulas
quantifying the model error of identified MIMO systems.
However they provide little insight in what affects the model
error. There are other expressions that try to give this insight,
however, they are typically valid only asymptotically (in both
the number of samples and model orders of the modules).
One classic result, valid for large data length N and large
model order n, is given by the following expression [6], [7]

Cov
[
vec Ĝ

]
≈ n

N
Φ−1u ⊗ Φv ,

where Φu is the input spectrum and Φv the noise spectrum.
This expression was extended in [8] to a general set of
orthonormal basis functions. , denoted by {Bk(z)}:

Cov
[
vec Ĝ

]
≈ 1

N

nB∑
k=1

|Bk(z)|2Φ−1u ⊗ Φv.

Note that both expressions are valid only for large model
orders. Our results, instead, are exact for finite model or-
ders (but still asymptotic in data length). Furthermore, we
hereby generalize variance results for multi-input single-
output (MISO) systems [9] and single-input multi-output
(SIMO) systems [10]. The significance of our results will
be clarified through simulation examples.

In Section II we give the problem formulation. Some
technical lemmas are formulated in Section III. In Section IV
we give the developed formulas of the model accuracy. In
Section V we illustrate the developed results on a 2-by-2
system. The paper ends with some conclusions in Section VI.

II. PROBLEM STATEMENT

We consider linear time-invariant dynamic systems with
m inputs and p outputs (see Fig. 1). Let us introduce the
vector notation

y(t) :=
[
y1(t) y2(t) . . . yp(t)

]T



and the input u(t) and noise e(t) are defined in the same
manner. The model is described as follows:

y(t) = G(q)u(t) + e(t)

where

G(q) =


G11(q) G12(q) . . . G1m(q)
G21(q) G22(q) . . . G2m(q)

...
...

. . .
...

Gp1(q) Gp2(q) . . . Gpm(q)

 .
Here q denotes the forward shift operator, i.e., qu(t) = u(t+
1) and the Gij(q) are causal stable rational transfer functions.
The modules Gij are modeled as

Gij(q, θij) = Γij(q)θij , θij ∈ Rnij, (1)

where Γij(q) = [B1(q), . . . ,Bnij (q)], i = 1, . . . , p and j =
1, . . . ,m, for some orthonormal basis functions {Bk(q)}nBk=1.
The basis functions can be tailored according to a pri-
ori knowledge on the system dynamics; for example, La-
guerre basis functions can be tailored to the time con-
stant of the system [11]. Examples of more general basis
functions can be found in [12], [13]. Here, orthogonality
is defined with respect to the scalar product defined for
complex functions f(z), g(z) : C → C1×m as 〈f, g〉 :=
1
2π

∫ π
−πf(e

iω)g∗(eiω) dω. The noise sequence {e(t)} is zero
mean and temporally white, but may be correlated in the
spatial domain:

E [e(t)] = 0, E
[
e(t)e(s)T

]
= δt−sΛ, (2)

for some positive definite matrix covariance matrix Λ, and
where E [·] is the expectation operator. We express Λ in terms
of its Cholesky factorization

Λ = ΛCHΛ
T
CH , (3)

where ΛCH ∈ Rp×p is lower triangular, i.e.,

ΛCH =


ρ11 0 . . . 0
ρ21 ρ22 . . . 0

...
...

. . .
...

ρp1 ρp2 . . . ρpp

 , (4)

for some {ρij}. Also notice that since Λ > 0,

Λ−1 = Λ−TCHΛ
−1
CH . (5)

The input sequence {u(t)} is also zero mean and temporally
white, but may be correlated in the spatial domain:

E [u(t)] = 0, E
[
u(t)u(s)T

]
= δt−sΣ, (6)

for some positive definite matrix covariance matrix Σ. We
express Σ in terms of its upper triangular Cholesky factor-
ization1

Σ = ΣCHΣ
T
CH . (7)

1The standard Cholesky factorization is defined with a lower triangular
factor but for reasons that will be clear in following sections, we need the
upper triangular counterpart.

Also Σ−1CH is upper triangular and we denote its elements by
{γij} according to

Σ−1CH =


γ11 γ12 . . . γ1m
0 γ22 . . . γ2m
...

...
. . .

...
0 0 . . . γmm

 . (8)

We summarize the assumptions on input, noise and model
as follows:

Assumption 2.1: The input {u(t)} is zero mean tempo-
rally white noise with finite moments of all orders, and (6)
holds with Σ > 0. The noise {e(t)} is zero mean and
temporally white, i.e, (2) holds with Λ > 0. It is assumed that
E
[
|e(t)|4+ρ

]
< ∞ for some ρ > 0. The data are generated

in open loop, that is, the input {u(t)} is independent of
the noise {e(t)}. The true input-output behavior of the data
generating system can be captured by our model structure,
i.e., the true system can be described by (1) and (1) for some
parameters θoij ∈ Rnij , i = 1, . . . , p, j = 1, . . . ,m. The
orthonormal basis functions {Bk(q)} are assumed stable.

A. Weighted least-squares estimate
By introducing

θ =
[
θT11, θ

T
21, . . . , θ

T
p1, . . . , θ

T
1m, θ

T
2m, . . . , θ

T
pm

]T ∈ Rn,

n :=
∑p
i=1

∑m
j=1 nij , the transfer function matrix

Ψ̃(q)
(n×pm)

= diag{ΓT11, ΓT21, . . . , ΓTpm}

and the notation

vecG(q)
(pm×1)

=
[
G.1(q) G.2(q) . . . G.m(q)

]T
,

we can write vecG(q) = Ψ̃(q)T θ and describe the model (1)
as a linear regression model

y(t) = ϕT (t)θ + e(t), (9)

where, using Theorem T2.13 in [14],

ϕT (t) = (uT (t)⊗ Ip)Ψ̃(q)T .

An unbiased and consistent estimate of the parameter vector
θ can be obtained from weighted least-squares, with weight-
ing matrix Λ−1 giving the linear unbiased estimator with
lowest variance (see, e.g., [2], [15]). Λ is assumed known;
however, this assumption is not restrictive since Λ can be
estimated from data and replacing Λ by a consistent estimate
does not affect the asymptotic covariance of θ̂ [16]. However,
in certain applications, not knowing Λ will increase the
covariance of θ̂. Under Assumption 2.1, the noise sequence
is zero mean, hence θ̂N is unbiased. It also follows that the
asymptotic covariance matrix of the parameter estimates is
given by

AsCov θ̂N = E
[
ϕ(t)Λ−1ϕT (t)

]−1
, (10)

where the expectation is over the input sequence. By repeated
use of the mixed product rule of Kronecker products (T2.4
in [14]) (10) can be expressed as

AsCov θ̂N = E
[
Ψ̃(q)

{
u(t)uT (t)⊗ Λ−1

}
Ψ̃(q)T

]−1
. (11)



Here AsCov θ̂N is the asymptotic covariance matrix of
the parameter estimates, in the sense that the asymptotic
covariance matrix of a stochastic sequence {fN}∞N=1, fN ∈
C1×q is defined as2

AsCov fN := lim
N→∞

N · E [(fN − E [fN ])∗(fN − E [fN ])].

In the problem we consider, using Parseval’s formula, (3) and
(5), the asymptotic covariance matrix, (11), can be written
as3

AsCov θ̂N =

[
1

2π

∫ π

−π
Ψ(ejω)Ψ∗(ejω) dω

]−1
= 〈Ψ, Ψ〉−1, (12)

where Ψ(q) = Ψ̃(q)(ΣCH ⊗ Λ−TCH). Note that Ψ(q) is block
upper triangular since Ψ̃(q) is block diagonal, Λ−TCH is upper
triangular and ΣCH is upper triangular4. The rest of this
contribution tries to analyze how model structure, input and
noise properties affect (12).

III. GEOMETRIC VARIANCE EXPRESSION

The following lemma is included for completeness.
Lemma 3.1: (Lemma II.9 in [17]) Let J : Rn → C1×q

be differentiable with respect to θ, and Ψ ∈ Ln×m2 ; let SΨ
be the subspace of L1×m

2 spanned by the rows of Ψ and
{BSk }rk=1, r ≤ n be an orthonormal basis for SΨ . Suppose
that J ′(θo) ∈ Cn×q is the gradient of J with respect to θ and
J ′(θo) = Ψ(zo)L for some z0 ∈ C and L ∈ Cm×q . Then

AsCov J(θ̂N ) = L∗
r∑

k=1

BSk (zo)∗BSk (zo) L. (13)

To make use of the aforementioned lemma, we notice that
the asymptotic variance is given by (12) with Ψ(q) =
Ψ̃(q)(ΣCH ⊗ Λ−TCH). Note that

∂ vecG(q)

∂θ
= Ψ(Σ−1CH ⊗ Λ

T
CH).

Introduce L := (Σ−1CH ⊗ ΛTCH). Then, using Lemma 3.1,

AsCov
[
vec Ĝ(ejω0)

]
= LT

n∑
k=1

BSk (ejω0)∗BSk (ejω0)L. (14)

To analyze (14), we will consider a few special cases. To
this end, we need to characterize the basis functions {BSk }.

A. Basis functions

We need the following assumption on the model structure:
Assumption 3.1: For each row i, if Gij contains Bk, then

Gi(j+1) contains Bk.
Assumption 3.1 states that the modules that do not contain
Bk are located in the upper left corner of G, which is
somewhat restrictive since this may not be achieved by

2This definition is slightly non-standard in that the second term is usually
conjugated. For the standard definition, in general, all results have to be
transposed, nevertheless, all results in this paper are symmetric.

3Non-singularity of 〈Ψ, Ψ〉 usually requires parameter identifiability and
persistence of excitation [2], both of which are satisfied under Assump-
tion 2.1.

4The reason for introducing the upper triangular factorization ΣCH is to
obtain this block upper triangular structure.

renaming the modules in all cases. The rows of Ψ that contain
Bk are given by

BkQk(ΣCH ⊗ Λ−TCH). (15)

We will also need the following definition:
Definition 3.1: For each basis function Bk, let

Qk := diag(q1, . . . , qmp),

where

qi :=

{
1 if entry i of vecG(q) does contain Bk
0 if entry i of vecG(q) does not contain Bk

Lemma 3.2: Assume Assumption 3.1 holds and let SΨ be
the rowspace of Ψ . Let {BSl (q)}nl=1 be such that for every
basis function Bk and every row i of vecG that has the basis
function Bk, there is a basis function of the form

BSl (q) :=
[
0 . . . 0 Bk(q) 0 . . . 0

]
,

i.e., the entry in column i of BSl (q) is Bk. Then {BSl (q)}nl=1

is a set of basis functions for SΨ .
Proof: Available upon request to the authors.

Example 3.1: To illustrate Lemma 3.2, we consider a
system with 2 inputs and 2 outputs. When all modules
contain Bk, Assumption 3.1 is satisfied, and (15) gives

Bk

γ11ρ11 γ11ρ21 γ12ρ11 γ12ρ21
0 γ11ρ22 0 γ12ρ22
0 0 γ22ρ11 γ22ρ21
0 0 0 γ22ρ22

,
and since the matrix is full rank, a set of basis functions
can be given by Lemma 3.2. We now look at which non-
full parametrizations comply with Assumption 3.1. Assump-
tion 3.1 tells us that the modules in G that contain Bk should
be located in the lower right corner. Naturally, if only G22

contains Bk, then (15) is given by

Bk

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 γ22ρ22

,
and the only basis function is BS1 (q) = [0, 0, 0,Bk(q)]. If
Assumption 3.1 still is to hold, we are allowed to add Bk to
either G12 or G21. In the first case, (15) is given by

Bk

0 0 0 0
0 0 0 0
0 0 γ22ρ11 γ22ρ21
0 0 0 γ22ρ22

,
and the second basis function is BS2 (q) = [0, 0,Bk(q), 0]. If
instead Bk is added to G21, (15) is given by

Bk

0 0 0 0
0 γ11ρ22 0 γ12ρ22
0 0 0 0
0 0 0 γ22ρ22

,
and the second basis function is BS2 (q) = [0,Bk(q), 0, 0]. To
illustrate what happens when Assumption 3.1 is not satisfied,



consider the case when G12 does not contain Bk and the rest
of the modules do. Then, (15) is given by

Bk

γ11ρ11 γ11ρ21 γ12ρ11 γ12ρ21
0 0 0 0
0 0 γ22ρ11 γ22ρ21
0 0 0 γ22ρ22

,
and the set of basis functions are not on the required form:

BS1 (q) =
[
0 0 0 Bk,

]
, BS2 (q) =

[
0 0 Bk 0

]
,

BS3 (q) = Bk(ρ211 + ρ221)
−1/2 [ρ11 ρ21 0 0

]
.

IV. MAIN RESULTS

The configuration of basis function prescribed by
Lemma 3.2 allows us to derive a neat expression for the
asymptotic covariance matrix in (14). which in turn will be
exemplified for a few special structures.

Theorem 4.1: Let Assumptions 2.1 and 3.1 hold. Then

AsCov
[
vec Ĝ(ejω0)

]
=

nB∑
k=1

|Bk(ejω0)|2LTQkL. (16)

where Qk is given by Definition 3.1 and

L := Σ−1CH ⊗ Λ
T
CH .

Proof: Follows from (14) using Lemma 3.2.
Remark 4.1: The formula (16) is a decomposition of the

variance of vec Ĝ(q) as the sum of the contributions of each
module basis function Bk. The weighting factor LTQkL is
determined by which other modules also contain Bk. In fact,
it is possible to associate LTQkL as the covariance of the
parameters related to the basis function Bk similar to the
results found in [10]. This has been left out due to space
limitations.

Remark 4.2: If Assumption 3.1 does not hold, (16) still
holds, but, in this case Qk in (16) must be replaced by
PTQkP , where P is an orthogonal matrix such that the
rowspace of BkQkP is the same as the rowspace of BkQkL.

We will now consider a few special cases where we can
give some insights into the expression (14). We will analyze
the weighting factor

LTQkL (17)

that depends on the other modules that contain Bk.

A. Full parametrization
We first consider the case when all modules Gij contain

the same set of basis functions, i.e., the model orders are
identical: n11 = n21 = . . . = npm. Naturally, in this case
Assumption 3.1 holds and Theorem 4.1 gives that (16) holds
with Qk = Imp which inserted in in (17) gives

LTQkL = Σ−1 ⊗ Λ. (18)

Hence, we have the following corollary:
Corollary 4.1: Let Assumption 2.1 hold. Let all modules

have the same model order. Then

AsCov
[
vec Ĝ

]
=

nB∑
k=1

|Bk|2(Σ−1 ⊗ Λ). (19)

Remark 4.3: This is a generalization of (1) derived in [8],
to finite model orders, when there is no temporal correlation
in neither input nor noise.

B. Unused input

We consider next the case when we do not estimate
parameters related to basis function Bk for modules with
input {ui}τk−1i=1 , i.e., modules G11, G21, . . . , Gp(τk−1) do not
contain Bk. Also in this case Assumption 3.1 holds and
Theorem 4.1 gives that (16) holds with

Qk =

[
0p(τk−1) 0

0 Im−τk−1

]
⊗ Ip, (20)

where 0p(τk−1) is a matrix of zeros of dimension p(τk − 1)×
p(τk − 1), and Im−τk−1 is an identity matrix of dimension
(m−τk−1)× (m−τk−1). Inserting (20) in (17) and using
Lemma 1.2 gives

LTQkL =

[
0p(τk−1) 0

0 Σ−1τk:m

]
⊗ Λ, (21)

where Σ−1τk:m is the inverse of the covariance matrix for the
inputs [uτ (t), . . . , um(t)]T . Inserting (21) in Theorem 4.1
leads to the following corollary:

Corollary 4.2: Let Assumption 2.1 hold. Assume that for
each basis function Bk, there is a τk such that no module
with input {uk}τk−1k=1 contains Bk. Then

AsCov
[
vec Ĝ

]
=

nB∑
k=1

|Bk|2
[
0p(τk−1) 0

0 Σ−1τk:m

]
⊗ Λ. (22)

Remark 4.4: If there is only one output, p = 1, we recover
the MISO case of Theorem 4 of [9], i.e., the main diagonal of
(22) corresponds to the module variance results of Theorem
4 of [9].

Remark 4.5: Depending on the input correlation structure,
the contribution from a basis function to the variance of
a parameter may be greatly reduced, given that the basis
function is not present in modules with inputs strongly
correlated to the input related to the parameter. Define σ2

i|l:o
as the variance of ui(t) conditioned on [ul(t), . . . , uo(t)]

T

(see [9]). From (22), Lemma 1.1 in the Appendix and
Lemma 1.2, it can be seen that the variance of a module
depends on the inverse of the variance of the input to that
module, conditioned on the inputs of modules that contain
the basis function. To give an example, consider the lower
right element of Σ−1τk:m, which is given by 1/σ2

m|τk:m−1.
If there is information about um(t) in {u1, . . . , uτk−1

} (not
found in {uτk , . . . , um−1}), then σ2

m|τk:m−1 > σ2
m|1:m−1

and the variance of Ĝmp will be lower.

C. Unused output

We now consider the case when we do not estimate a
parameter for basis function Bk for all modules that affect
output {yi(t)}τk−1i=1 , i.e., modules G11, G12, . . . , G(τk−1)m
do not contain Bk. Also in this case Assumption 3.1 holds
and Theorem 4.1 gives that (16) holds with

Qk = Im ⊗
[
0p(τk−1) 0

0 Ip−τk−1

]
, (23)

where 0p(τk−1) is a matrix of zeros of dimension p(τk − 1)×
p(τk − 1), and Ip−τk−1 is an identity matrix of dimension



(p− τk − 1)× (p− τk − 1). Inserting (23) in (17) and using
Lemma 5 of [10] we obtain

LTQkL = Σ−1 ⊗
[
0p(τk−1) 0

0 Λτk:m|τk−1

]
, (24)

where Λτk:m|τk−1 is the covariance of [eτ (t), . . . , em(t)]T

given the other noise sources [e1(t), . . . , eτ−1(t)]T . In this
case, it follows from Theorem 4.1 that the following corollary
holds:

Corollary 4.3: Let Assumption 2.1 hold. Assume that for
each basis function Bk, there is a τk such that no module
that affect output {yk(t)}τk−1k=1 contains Bk. Then

AsCov
[
vec Ĝ

]
=

nB∑
k=1

|Bk|2Σ−1 ⊗
[
0p(τk−1) 0

0 Λτk:m|τk−1

]
.

(25)

Remark 4.6: Result (25) is a generalization of the SIMO
result of Theorem 7 in [10] in the sense that if there is only
one input, m = 1, we recover Theorem 7 in [10].

Remark 4.7: Depending on the noise correlation structure,
the parameter variance contribution from a basis function
may be greatly reduced, given that the basis function is not
present in modules with outputs affected by noise strongly
correlated to the noise affecting the output related to the
parameter. Define λi as the covariance of ei(t) and λi|τk−1
as the covariance of ei(t) conditioned on the noise sources
[e1(t), . . . , eτk−1(t)]

T . Consider the lower right element of
Λτk:m|τk−1, which is given by λm|τk−1. If there is informa-
tion about em(t) in {e1, . . . , eτk−1

}, then λm|τk−1 < λm and
the variance of Ĝmp will be lower.

V. NUMERICAL EXAMPLES

A. First Experiment

In this section we illustrate the developed results on a
system with 2 inputs and 2 outputs. To better illustrate the
results, the parameter variances will be studied instead of
AsCov vec Ĝ. However, the results have a direct link to the
parameter variance, cf. Remark 4.1. The system is given by

G(q) =

[
q−1 2q−1 + q−2

q−1 + 4q−2 q−1 + 2q−2

]
. (26)

The model is

G(q, θ) =

[
θ111q

−1 θ112q
−1 + θ212q

−2

θ121q
−1 + θ221q

−2 θ122q
−1 + θ222q

−2

]
, (27)

where all parameters have been given a superscript that
denotes which basis function they correspond to. One pa-
rameter, related to the basis function q−2, is not estimated
for G11, and this will lead to a decrease in variance for the
other parameters related to the basis function q−2 compared
to those related to the basis function q−1. We will investigate
how the amount of correlation in the input determines the
variance reduction. The Cholesky factors of the noise and
input are given by

ΛCH =

[
1 0
0.8 (1− 0.82)1/2

]
, ΣCH=

[
(1− β2)1/2 β

0 1

]
,

respectively. Thus σ2
1 = σ2

2 = 1, while the parameter β
determines the amount of correlation between the inputs,
i.e., E [u1(t)u2(t)] = β. For each β, we generate MC =
2000 Monte Carlo experiments, where in each of them we
collect N = 2000 input-output samples. At the i-th Monte
Carlo run, we generate new trajectories for the input and the
noise. The sample asymptotic covariance matrix, for each β,
is computed as the sample covariance matrix multiplied by
the number of samples N .

AsCov θ̂ =
N

MC

MC∑
i=1

(θ̂i − θo)(θ̂i − θo)T ,

It is seen in Figure 2 that the variance is reduced for all
parameters related to the basis function q−2 compared to
those related to q−1, as long as there is correlation between
the inputs (the variance would have been the same if also
G11 had a parameter related to q−2). The variance of θ̂212 is
independent of the input correlation and behaves exactly as
the parameters of Corollary 4.2, even though the Corollary
is not applicable since θ221 is still estimated. This indicates
that it should be possible to strengthen Corollary 4.2. The
whole input excitation of q−2u2(t) is used for this estimate
i.e., AsVar θ̂212 = λ1/σ

2
2 = 1, since y1(t) does not depend

on q−2u1(t). The variance of θ̂221 is strictly smaller than
θ̂121, regardless of the input correlation. The variance of
this parameter behaves exactly as in Corollary 4.3, even
though the assumptions of Corollary 4.3 are not met (θ212
is still estimated). This indicates that it should be possible
to strengthen Corollary 4.3. The measurement y1(t) can be
used to estimate the noise affecting y2(t) without corrupting
the estimate θ̂221 , i.e., AsVar θ̂221 = λ2|1/σ2

1|2, since y1(t)
does not depend on q−2u1(t). The estimate θ̂222 also benefits,
as long as there is correlation between the inputs.
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Fig. 2. Variance of the parameters of G11, G12, G21 and G22

respectively. The parameters related to the basis function q−2, θ212, θ221
and θ222, are estimated with reduced variance compared to those related to
the q−1. The variance of θ212 does not depend on the input correlation.

B. Second Experiment
Let again the system be given by (26) and the model by

(27). In this experiment we vary the noise correlation instead



of the input correlation. Let the Cholesky factors of the noise
and input be given by

ΛCH =

[
1 0
β (1− β2)1/2

]
, ΣCH=

[
0.8 (1− 0.82)1/2

0 1

]
,

respectively. It is seen in Figure 3 that the variance is reduced
in all parameters related to the basis function q−2 compared
to those related to q−1 as long as there is correlation between
the outputs. The variance of θ̂212 behaves as the MISO case,
i.e., AsVar θ̂212 = λ1/σ

2
2 = 1 and AsVar θ̂212 is independent

of the correlation between the outputs. The variance of θ̂221
and θ̂222 are lower than θ̂121 and θ̂122 respectively for nonzero
correlation, and the variances are the same when there is
zero correlation. When β goes to one, the non-estimable part
of e2(t) conditioned on e1(t) goes to zero and we achieve
perfect estimation of θ̂221.
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Fig. 3. Variance of the parameters of G11, G12, G21 and G22

respectively. The parameters related to the basis function q−2, θ212, θ221
and θ222, are estimated with reduced variance compared to those related to
the q−1. The variance of θ212 does not depend on the noise correlation.

VI. CONCLUSIONS

In this paper, we have extended existing variance formulas
for MIMO systems to finite model orders, assuming tempo-
rally uncorrelated input and noise. We have shown that model
structure strongly influences the effect spatial correlation in
inputs and noise have on the variance of module transfer
function estimates. We have highlighted connections with
recently developed results for SIMO and MISO models.
The interplay of model structure, input correlation and noise
correlation has been exemplified by numerical simulations.
We believe there is ample space for further research. For
instance, including temporal correlation on input and noise
still presents a challenging problem.
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APPENDIX

A. Useful lemmas
Lemma 1.1: Let u(t) ∈ Rm have zero mean and co-

variance matrix Σ > 0. Let ΣCH be the upper triangular
Cholesky factor of Σ so that (7) holds, and let the elements
of its inverse be denoted as in (8). Then, for k ≤ i− 1

σ2
i|k:i−1 =

1∑i
j=k γ

2
ji

.

Proof: Available upon request to the authors
Lemma 1.2: Let u(t) ∈ Rm have zero mean and co-

variance matrix Σ > 0. Let ΣCH be the upper tri-
angular Cholesky factor of Σ so that (7) holds. Let
Σ−1CH be partitioned according [u1(t), . . . , ui−1(t)]T and
[ui(t), . . . , um(t)]T as:

Σ−1CH =

[
[Σ−1CH ]11 [Σ−1CH ]12

0 [Σ−1CH ]22

]
.

Then

Σ−1i:m = [Σ−1CH ]T22[Σ
−1
CH ]22

Proof: Available upon request to the authors
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