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Abstract— Modeling complex and interconnected systems is
a key issue in system identification. When estimating individ-
ual subsystems of a network of interconnected system, it is
of interest to know the improvement of model-accuracy in
using different sensors and actuators. In this paper, using a
geometric approach, we quantify the accuracy improvement
from additional sensors when estimating the first of a set of
subsystems connected in a cascade structure. We present results
on how the zeros of the first subsystem affect the accuracy of the
corresponding model. Additionally we shed some light on how
structural properties and experimental conditions determine
the accuracy. The results are particularized to FIR systems, for
which the results are illustrated by numerical simulations. A
surprising special case occurs when the first subsystem contains
a zero on the unit circle; as the model orders grows large, the
variance of the frequency function estimate, evaluated at the
corresponding frequency of the unit-circle zero, is shown to be
the same as if the other subsystems were completely known.

Index Terms— Asymptotic covariance, cascade systems, sys-
tem identification.

I. INTRODUCTION

Many dynamical systems are, or can be modeled as, com-
posed of subsystems interconnected in a network structure.
When estimating models of structured systems, including
structural information may improve the accuracy of the
models and ease their interpretability. In this paper we will
regard the structure as known a priori. In a structured system,
there might be a large set of sensors and actuators available,
and choosing which of them to use and their location is
an important issue. Therefore, it is interesting to understand
how each sensor and actuator affect model accuracy (model
identifiability is also of interest, but is outside of the scope
of this paper, see e.g. [1]). Some contributions in this vein
includes multi-input systems considered in [2], and cascaded
systems studied in [3].

Recently, a geometric approach developed in [4], [5] has
shed some light into how structural properties (e.g. model
structure and model order), and experimental conditions (e.g.
input spectrum and noise variances) determine the asymp-
totic covariance matrix. This type of analysis concern orthog-
onal projections in the Hilbert space L2 and has already given
valuable insights into cascaded and multi-sensor systems [5].
The key results are conditions on the subsystems, under
which adding more sensors do not improve the accuracy.
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The remaining problem that we will address is quantifying
the improvement in accuracy of using more sensors.

Given a cascaded setup and experimental conditions, there
are expressions for the resulting model’s accuracy, measured
as the asymptotic covariance of the estimated parameters.
However, these expressions do not provide insight into how
structural properties and experimental conditions affect the
covariance. Our aim is to use the geometric approach to
give such insights for the cascaded structure. In that sense,
our work is an extension of the work presented in [4]. The
main contribution of this paper is to present some results on
how the zeros of the first subsystem affect the information
gain of using multiple sensors in the cascaded structure,
when estimating that first subsystem. We try to quantify the
contribution of each sensor to a model’s accuracy, with focus
on a frequency range dependent on the zeros of the transfer
function of interest, and the number of model parameters.
This information might be useful in determining if we should
use additional sensors. There is a trade-off to be made since
additional sensors means more data have to be collected, and
more parameters have to be identified. Hence, if the gain in
accuracy is concentrated mainly in regions of little interest,
the additional effort may not be worthwhile.

After presenting the problem in Section II we recall some
technical preliminaries and variance expressions in Section
III. Section IV contains the main results, which covers the
calculation of one basis function and its implication on the
frequency response estimate. Our theoretical findings are
illustrated and confirmed by simulations on finite impulse
response (FIR) models in Section V. The paper is finished
with conclusions and some final remarks in Section VI.

Notation

We will treat vector valued complex functions as row vec-
tors, and the inner product of two such functions f(z), g(z) :
C → C1×m is defined as 〈f, g〉 , 1

2π

∫ π
−πf(eiω)g∗(eiω) dω

where g∗ denotes the complex conjugate transpose of g.
Furthermore f denotes the complex conjugate of f . In case
f, g are matrix valued functions we keep the same notation
whenever the matrix dimensions are compatible. We denote
by ‖f‖ the L2-norm of f : C → Cn×m and it is given
by
√

Tr 〈f, f〉. We call two functions f, g orthogonal if
〈f, g〉 = 0; if f, g are matrix valued, they are considered
orthogonal if every entry of the resulting matrix is zero. A
set of functions {Bk}nk=1 is said to be orthonormal if they
are mutually orthogonal with unit L2-norm. If Ψ ∈ Ln×m2 ,
we denote by SΨ ⊂ Lm2 the subspace spanned by the rows of
Ψ. We denote the orthogonal projection of f onto the space
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SΨ by PSΨ
[f ], i.e., PSΨ

[f ] is the unique solution to

min
g∈SΨ

‖g − f‖.

For a differentiable function f : Rn → Cq , f ′(x̄) is a n× q
matrix with dfj(x)

dxi

∣∣∣
x=x̄

as (i, j)th entry. For a row vector X ,
we will denote by diag(X) the matrix with the elements of
X in the main diagonal and where all other elements equals
zero. We use the notation A† for the Moore-Penrose pseudo
inverse of A. Function arguments will, for clarity and lack
of space, often be omitted. However, they should be clear
from the context.

II. PROBLEM STATEMENT

u G1 G2
. . . Gm

Σ y1 Σ y2 Σ ym

e1 e2 em

Fig. 1: Cascaded Structure

Consider the single input single output systems connected
in cascade as depicted in Fig 1, which are described by the
following set of equations:

yk(t) =

k∏
i=1

Gi(q)u(t) + ek(t), k = 1, . . . ,m, (1)

where q denotes the forward shift operator, i.e., q−1u(t) =
u(t−1) using normalized sampling time. We assume that the
additive noise sequences {ei(t)} are mutually independent
zero mean white noise sequences independent of the input
u(t) with variances λi, i = 1, . . . ,m.

The input is assumed to be a realization of a weakly
stationary stochastic process with spectrum Φu. The models
of the subsystems are independently parameterized with θ =[
θ1, . . . , θm

]
, where θi ∈ Rdi , di ∈ R for all i = 1, . . . ,m.

We assume the true system is in the model set and denote
the true parameters by θo, that is,

Gk(q) = Gk(q, θok), k = 1, . . . ,m. (2)

We are interested in estimating the first subsystem G1. We
assume that the parameter vector θ is estimated from a data
set of measured inputs and outputs of sample size N and we
denote the estimate by θ̂N . Under mild regularity conditions
(see [6] for details), as N goes to infinity, the parameter
error

√
N(θ̂N − θo) converges in distribution to the normal

distribution with zero mean and covariance matrix P , which
we conveniently denote by

√
N(θ̂N − θo) ∈ AsN (0, P ). (3)

Here P is the asymptotic covariance matrix of the parameter
estimates, in the sense that the asymptotic covariance matrix
of a stochastic sequence {fN}∞N=1, fN ∈ Cq is defined as

AsCovfN , lim
N→∞

N ·E
[
(fN −EfN )T (fN −EfN )

]
. (4)

Assume for the moment that the asymptotic covariance
matrix can be written as

PN = AsCov θ̂N = 〈Ψ,Ψ〉† (5)

where Ψ : C → Cn×m, for some integer m > 0 that in
our case corresponds to the number of subsystems. All the
elements of Ψ are assumed to belong to L2

1

Let J : R1×n → C1×q be a differentiable function of θ.
From (3), it follows that
√
N(J(θ̂N )− J(θo)) ∈ AsN (0,AsCov J(θ̂N )). (6)

Using Gauss’ approximation formula (or the delta rule) [6]
and (3) it can be shown that

AsCov J(θ̂N ) = ΛT [〈Ψ,Ψ〉]†Λ, (7)

where Λ is the derivative Λ , J ′(θo) ∈ Cn×q .

III. TECHNICAL PRELIMINARIES AND VARIANCE
EXPRESSIONS

In this section we recall some technical preliminaries.
Theorem 3.1: (Theorem II.5 in [4]) Suppose that J :

R1×n → C1×q is differentiable and let the asymptotic
covariance matrix AsCov J(θ̂N ) be defined by (7) where
Ψ ∈ Ln×m2 . Suppose that γ ∈ Lq×m2 is such that

Λ = 〈Ψ, γ〉, (8)

then

AsCov J(θ̂N ) = 〈PSΨ
[γ] ,PSΨ

[γ]〉T , (9)

where SΨ is the subspace of Lm2 spanned by the rows of Ψ.
In some cases it is possible to calculate the projection ex-

plicitly, like in our case. The following corollary to Theorem
3.1 will be instrumental in calculating the projection.

Lemma 3.1: (Lemma II.9 in [4]) Let J , Ψ, and SΨ be as in
Theorem 3.1 and suppose that Λ = Ψ(zo)L for some z0 ∈ C
and L ∈ Cm×q . Let {Bk}lk=1, l ≤ n, be an orthonormal basis
for SΨ. Then

AsCov J(θ̂N ) = LT
l∑

k=1

BTk (zo)Bk(zo) L. (10)

Let Fu be a stable minimum-phase spectral factor of Φu.
Then, for the cascaded system, we can express Ψ in (5) as

Ψ =


G′1 G2G

′
1 · · · Gm · · ·G2G

′
1

0 G′2G1
. . . Gm · · ·G3G

′
2G1

...
. . . . . .

...
0 · · · 0 G′mGm−1 · · ·G1

FuW−1, (11)

where

W = diag([λ
1/2
1 , . . . , λ1/2

m ]) (12)

with G′j being the partial derivative of Gj with respect to
θj . Define T as the row vector containing all frequency
responses between u and

[
y1 · · · ym

]
, that is

T ,
[
G1 G2G1 · · · Gm · · ·G1

]
, (13)

1This is the standard situation when the true parameter vector corresponds
to a stable predictor in the prediction error method, see [6].
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then

Λ = T ′

=


G′1 G2G

′
1 · · · Gm · · ·G2G

′
1

0 G′2G1
. . . Gm · · ·G3G

′
2G1

...
. . . . . .

...
0 · · · 0 G′mGm−1 · · ·G1


= ΨWF−1

u .

This allows us to apply Lemma 3.1 to express the asymptotic
covariance of T as

AsCov T̂ (ejω) = Φ−1
u (ejω)WT

l∑
k=1

BTk(ejω)Bk(ejω)W. (14)

We only need to consider the top left corner of (14), because
we are only interested in Ĝ1. Without loss of generality, the
basis functions can be expressed as

Bk =
[
c1kB1

k . . . cmk Bmk
]
, (15)

where cjk ∈ R+, ‖Bjk‖ = 1 if Bjk 6= 0 for all k ≤ l, j ≤
m. For each basis function, the coefficients {cjk}mj=1 satisfy
‖
[
c1k . . . cmk

]
‖22 = 1, which ensures that ‖Bk‖ = 1. If

Bjk = 0 then cjk is defined to be zero. With this notation, we
obtain

AsVar Ĝ1(ejω) =
λ1

Φu(ejω)

l∑
k=1

|c1kB1
k(ejω)|2. (16)

In the next section we will provide a specific basis that will
be used to obtain insights of (16).

IV. CALCULATING BASIS FUNCTIONS AND VARIANCE
RESULTS

In this section we present a theorem that let us determine
one basis function, B1, of a set {Bk}lk=1 that spans Ψ and
satisfies

〈Bi1,Bij〉 = 0, i = 1, . . . , l j = 2, . . . , l, (17)

allowing us to compute the variance in (16) at a specific
frequency point.

Theorem 4.1: Let G1 have a zero in ξ ∈ C and none of
G1-Gm have a pole in ξ, i.e. there is no pole-zero cancelation
of the zero ξ in Ψ. Define {Aik}

li
k=1 as a basis for the space

spanned by the rows of the ith column in Ψ for i = 1, . . . ,m.
Then we can choose a basis {Bk}lk=1 for Ψ with

Bk =
[
c1kB1

k . . . cmk Bmk
]
, k = 1, . . . , l, (18)

such that

〈Bi1,Bij〉 = 0, i = 1, . . . ,m j = 2, . . . , l, (19)

where

c11 = b1λ
−1/2
1

(
b21λ
−1
1 + b22λ

−1
2 |G2(ξ)|2+

+ · · ·+ b2l λ
−1
m |Gm(ξ) · · ·G2(ξ)|2

)−1/2 (20a)

Bi1 = bi

li∑
k=1

Aik(ξ)Aik, i = 1, . . . ,m, (20b)

and {bi1}mi=1 are normalization constants such that ‖Bi1‖ = 1.
Proof: See Appendix B.

Notice that (19) does not follow from the orthogonality of
the basis function {Bk} as the next example illustrates.

Example 4.1: Consider

Ψ(z) =

[
z−1 z−2

z−1 −z−2

]
,

formed from {A1
k}1k=1 = z−1 and {A2

k}1k=1 = z−2. Recall
that {z−k}∞k=0 forms a (complete) orthonormal set [7]. Then
one choice of basis functions is

B1(z) = 2−1/2
[
z−1 z−2

]
, B2(z) = 2−1/2

[
z−1 −z−2

]
and 〈B1,B2〉 = 0, even though 〈B1

1,B1
2〉 = 1.

The work invested in calculating a specific basis function
will now be put to use. The covariance of the transfer
function estimate will, at the frequency of the zero, be
strongly linked to that specific basis function as the next
theorem shows.

Theorem 4.2: Assume that G1 has a zero at ξ = rejωξ ,
where r ∈ R+ and that the assumptions in Theorem 4.1 hold.
Then

AsVar Ĝ1(ejωξ) ≤ λ1

Φu(ejωξ)
‖f1‖2

(
1−

− (1− (c11)2)〈B1, f1/‖f1‖〉2),

(21)

where

f1 =

l1∑
k=1

A1
k(ejωξ)A1

k. (22)

If r = 1, then (21) simplifies to

AsVar Ĝ1(ejωξ) =
λ1

Φu(ejωξ)
(c11)2b−2

1 , (23)

or equivalently

AsVar Ĝ1(ejωξ) =
λ1

Φu(ejωξ)
Z−1, (24)

where

Z =
b21
λ1

+
b22
λ2
|G2(ejωξ)|2+

+ · · ·+ b2m
λm
|Gm(ejωξ) · · ·G2(ejωξ)|2.

(25)

Proof: Using Lemma A.2 we can rewrite (16) as

AsVar Ĝ1(rejωξ) =
λ1

Φu

l∑
k=1

(c1k)2|〈B1
k, f1〉|2. (26)

To arrive at (21), we notice that we can bound the contri-
bution from the other basis functions through ck ≤ 1 and∑r
k=1〈Bk, f1/‖f1‖〉2 = 1. If r = 1, then f1 = b−1

1 B1, and
the orthogonality of {B1

k} gives

AsVar Ĝ1(ejωξ) =
λ1

Φu
(c11)2b−2

1 . (27)

The expressions (21-23) give insight into how much the
variance of G(ejωξ) would increase if we remove the sensor
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that measures y2, or decrease if we add another sensor. Simi-
lar observations can be made when r 6= 1 regarding the upper
bound in (21). If we take a closer look at c11, we notice that it
resembles the signal to noise ratio of the sensors. That means,
a higher ratio between the gain from the output of G1 to a
given sensor and the noise variance, leads to better accuracy.
The constants {bj}mj=1 provide a scaling that in some sense
depends on the “size” of the corresponding spaces, so that
sensors far away from G1 contribute less to the accuracy
of the model of G1. Note that if one subsystem is zero at
ejωξ , i.e., Gj(ejωξ) = 0, then any sensor downstream of
Gj will not reduce the variance of G1(ejωξ) regardless of
their signal-to-noise ratio, which should come as no surprise.
This generalizes to the following observation: if Gj(ejωξ)
is small, then the benefit from sensors downstream of Gj
is limited. These results are related to those found in [3],
where, in the case of three subsystems, knowing y2 and
y3 will not improve the quality of the estimate of θ1, if
G2(q, θo2)G′1(q, θo1) = G′2(q, θo2)G1(q, θo1). Our results have
a weaker condition and provide a weaker result, that is, if
one zero is common between G1 and G2, then y2 and y3 will
not considerably improve the quality of the estimate around
the corresponding frequency.

Corollary 4.1: Let the assumptions of Theorem 4.2 hold.
Then

AsVar Ĝ1(ejω) ≤ λ1

Φu(ejω)
‖f1‖2

(
1−

− (1− (c11)2)〈B1, f1/‖f1‖〉2
)
,

(28)

where

f1 =

l1∑
k=1

A1
k(ejω)A1

k(z). (29)

Proof: Follows from the proof of Theorem 4.2, by
changing ωξ to ω in the definition of f1.
Theorem 4.2 and Corollary 4.1 only consider one basis func-
tion determined by one zero of G1. If we know additional
zeros, Theorem 4.2 provides different sets of basis functions
for the different zeros and corresponding lower bounds for
the variance at the corresponding frequencies. However using
Gram-Smith orthogonalization we can determine orthonor-
mal basis functions of one set and refine the lower bounds
in Theorem 4.2 and Corollary 4.1 accordingly.

V. FIR CASE

In this section, we consider FIR systems, all with true
order p, that is, subsystem j can be expressed for some
{gj,k}pk=1 ∈ Rp as

Gj(q) =

p∑
k=1

gj,kq
−k.

The first system G1 has a zero at ξ = ejωξ , ωξ ∈ [0, 2π],
Φu = 1, and we estimate each transfer function with n
parameters. We only give the expressions for two subsystems
to ease notation, however, the generalization to more sensors
is straightforward. We assume that we can take {A1

k} =

TABLE I: Comparison of the asymptotic variance of Ĝ1(ejπ)
with Monte-Carlo simulations.

n−1AsVar Ĝ1(ejπ) Equation (23) Directly (7) Monte-Carlo
n = 2 0.6000 0.6000 0.5913
n = 10 0.5238 0.5238 0.5413

{z−k}n+(l−1)p
k=l as a basis for l:th column of Ψ, then b2k =

n+ (l − 1)p− (l − 1) (which does not hold if for example
G1 = G2). Equation (24) becomes

AsVar Ĝ1(ejωξ) =
n

λ−1
1 + n

n+p−1λ
−1
2 |G2(ejωξ)|2

. (30)

We would expect that when we estimate both G1 and G2

with many parameters, the benefit of the second sensor would
diminish. However, this is not the case when G1 has a zero
on the unit circle:

lim
n→∞

lim
N→∞

N

n
Var Ĝ1(ejωξ) =

1
1
λ1

+ 1
λ2
|G2(ejωξ)|2

.

This is the same asymptotic variance as if the subsystem G2

was completely known (the noise signals are uncorrelated,
so the optimal variance is the inverse of the sum of the
information in each signal). To us, this is a surprising result.
However, it fits with the discussion on optimal input design
of structured systems [8], where the input signal should be
designed to hide unimportant system properties. Here, since
G1(ejωξ) = 0, the output signal y2 does not contain any
information about G2(ejωξ).

In the following example and Example 5.2, (30), and its
generalization, are verified by MATLAB simulations.

Example 5.1: We consider a setup according to (1), with
two FIR transfer functions: G1 = z−1 + z−2 and G2 = z−1,
where λ1 = λ2 = 1. G1 thus have a zero at z = ejπ.
The input signal is white noise with variance σ2

u = 1.
The variance at ωξ = π is estimated in 3 ways: calculated
from (24), calculated directly from (7) and calculated as
the variance from 1,000 Monte-Carlo simulations. When
estimating the given system with FIR models of order n,
(24) reduces to

AsVar Ĝ1(ejωξ) =
1

1
n + 1

n+1

. (31)

Each estimate in the Monte-Carlo simulations is the mini-
mizer of the cost function

N∑
i=1

(y1(i)−G1(q)u(i))2 +(y2(i)−G1(q)G2(q)u(i))2, (32)

with N = 104 data points. The minimization is solved with
Matlab’s built in function lsqnonlin, initialized at the true
parameter values of the systems.

The Monte-Carlo simulations come close to what is pre-
dicted by Equation (24) (cf. Table I). The reduction in
variance, compared to only using y1, is centered around the
frequency of the zero (see Figures 2 and 3). Note that, if we
only use y1 then (N/n)VarĜ1(ejωξ) = 1 for all frequencies.
The intuition is that the input to the second system is zero
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Fig. 2: Asymptotic variance of Ĝ1, weighted by number of
estimated parameters n = 2, and number of data points N =
104, at frequencies [0, 2π]. The variance is reduced around
the frequency where G1 is zero, when also the output y2

from G2 is also used.

10−2 10−1 100
0.5

0.6

0.7

0.8

0.9

1

ω(rad/s)

N
/n

V
ar
Ĝ
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Fig. 3: Asymptotic variance of Ĝ1, weighted by number of
estimated parameters n = 10, and number of data points
N = 104, at frequencies [0, 2π]. The reduction in variance
is more focused around the frequency where G1 is zero
compared to Figure 2.

at the frequency ejωξ and therefore, with a slight abuse of
notation, y2(ejωξ) is a signal uncorrelated with the input
u(ejωξ). Thus, y2(ejωξ) tells us that either G1(ejωξ) = 0, or
G2(ejωξ) = 0 (or both). Furthermore, the transfer functions
in our model set are all continuous, which implies that if G2

is large around ejωξ , it is unlikely to drop to zero at ejωξ .
Thereby, y2 gives us information that G1(ejωξ) is small. A
related aspect not presented in the figures, is that the estimate
of G2(ejωξ) is poor because of the poor signal-to-noise
ratio, as expected. When the number of estimated parameters
increases, the reduction in variance becomes more focused
around ωξ. This is due to the increased order of the basis
functions (cf. Figure 2 and 3).

Example 5.2: Consider the case when two additional sub-

TABLE II: Comparison of the asymptotic variance of
Ĝ1(ejπ) with Monte-Carlo simulations. The outputs y1-y4

are used here.

n−1AsVar Ĝ1(ejπ) Equation (23) Directly (7) Monte-Carlo
n = 2 0.3371 0.3309 0.3305
n = 10 0.2336 0.2314 0.2561
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Fig. 4: Asymptotic variance of Ĝ1, weighted by number of
estimated parameters n = 2, and number of data points N =
104, at frequencies [0, 2π]. The variance is reduced more than
in Figure 2, when also y3 and y4 are used.

systems are appended to the setup of Example 5.1, still
satisfying Equation (1), with G3 = z−2, G4 = (z−1 −
z−2)/

√
2 and λ3 = λ4 = 1. Simulations are performed in

the same way as in Example 5.1. Again, the Monte-Carlo
simulations come close to what is predicted by Equation
(24) (cf. Table II). Notice the similarities between the sets
of Figures 2 and 3 compared to Figures 4 and 5, and the
scaling effect that comes from the additional sensors. The fit
is significantly better in Figure 2 because the ratio between
number of samples and estimated parameters is larger.

VI. CONCLUSIONS

In this paper we have analyzed the asymptotic variance
of the first of a set of subsystem connected in a cascade
structure. The main contribution is results on how the zeros
of the first subsystem affect the accuracy of the corre-
sponding model. The surprising special case is when the
first subsystem contains a zero on the unit circle; as the
model orders grow large, the variance at the corresponding
frequency of the unit-circle zero is shown to be the same as if
the other subsystems were completely known. Additionally,
we have derived quantifications of the increase in accuracy
for a broader frequency range, the extent of which depends
on the number of estimated parameters and model structure.
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Ĝ

1
(ω

)

Asymptotic Theory
Monte-Carlo

Fig. 5: Asymptotic variance of Ĝ1, weighted by number of
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APPENDIX A
PRELIMINARY LEMMAS

Lemma A.1: Let f ∈ Ll2 and let Smn be a (closed)
subspace of Lm2 with orthonormal basis {Bk}nk=1. Then

PSmn [f ] ,
n∑
k=1

〈f,Bk〉Bk (A.1)

is the orthogonal projection of f on Smn , i.e., it is the unique
solution to

min
g∈Smn

‖g − f‖.
Proof: See, e.g., [7].

Lemma A.2: Let X be a finite-dimensional subspace of
Lm2 , {Ak}∞k=1 be an orthonormal basis for Lm2 and {Ak}rk=1

a basis for X . If the function f : C→ Cm given by

f(z) =

r∑
k=1

Ak(ξ)Ak(z), (A.2)

where ξ ∈ C, then for any G ∈ X

〈G, f〉 = G(ξ). (A.3)
Proof: We can express G as

G =

r∑
j=1

GjAj , (A.4)

for some scalars {Gj}. From the orthogonality of the basis
functions we have that

〈G, f〉 = 〈
r∑
j=1

GjAj ,
r∑

k=1

Ak(ξ)Ak〉 (A.5)

=

r∑
k=1

GkAk(ξ) = G(ξ). (A.6)

Remark A.1: The function f is strongly related to the so-
called ”reproducing kernel” for the space X (see [9] and the
references therein).

Corollary A.1: Let G ∈ X and f be as in Lemma A.3.
Then

〈G, f〉 = 0, (A.7)

if and only if

G(ξ) = 0. (A.8)
Proof: Follows directly from Lemma A.2.

APPENDIX B
PROOF OF THEOREM 4.1

For ease of notation we will assume Φu(ejω) = 1 for
ω ∈ [0, 2π] and λ1 = · · · = λm = 1; it is straightforward to
adjust the derivations for the general setting. It is not obvious
that B1 lies in the space spanned by the rows of Ψ; however,
this will be clear from how we construct B1. To construct
B1, we project Ψ onto the space X , defined as the span of
the m functions that have Bk1 in the kth column and zeros
in the other columns, e.g. the first one being

[
B1

1 0 · · ·
]
.

Here, Bk1 is defined as in (20b). Applying Lemma A.1, we
obtain

PX [Ψ]=

〈G
′
1,B1

1〉B1
1 · · · 〈Gm · · ·G′1,Bm1 〉Bm1

0 0 0
...

...
...

, (B.1)

where all rows are zero except the first because of Corollary
A.1. Furthermore, we have used the fact that Bk1 , k = 1, . . . , l
have unit norm. Applying Lemma A.2 to (B.1) we obtain

PX [Ψ] =

G
′
1(ξ)
0
...

 [b1B1
1 · · · bmGm(ξ) · · ·G2(ξ)B2

m

]
.

Normalize the vector
[
b1B1

1 · · · bmGm(ξ) · · ·G2(ξ)Bm1
]

to form B1. Note that PX [Ψ] =
[
C 0

]T B1 = PB1
[Ψ] for

some constant vector C, that is, dim(PX [Ψ]) = 1 and B1 is
a basis vector for this space. Consequently:

Ψ− PB1
[Ψ] = PX⊥ [Ψ] ⊥ X , (B.2)

which is equivalent to (19).
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