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Abstract

In system identification, it is often difficult to find a physical intuition to choose a noise model structure. The importance of
this choice is that, for the prediction error method (PEM) to provide asymptotically efficient estimates, the model orders must
be chosen according to the true system. However, if only the plant estimates are of interest and the experiment is performed
in open loop, the noise model may be over-parameterized without affecting the asymptotic properties of the plant. The
limitation is that, as PEM suffers in general from non-convexity, estimating an unnecessarily large number of parameters will
increase the chances of getting trapped in local minima. To avoid this, a high order ARX model can first be estimated by least
squares, providing non-parametric estimates of the plant and noise model. Then, model order reduction can be used to obtain
a parametric model of the plant only. We review existing methods to perform this, pointing out limitations and connections
between them. Then, we propose a method that connects favorable properties from the previously reviewed approaches. We
show that the proposed method provides asymptotically efficient estimates of the plant with open loop data. Finally, we
perform a simulation study, which suggests that the proposed method is competitive with PEM and other similar methods.

Key words: System identification, Steiglitz-McBride, High order ARX-modeling, maximum likelihood.

1 Introduction

The prediction error method (PEM) is a well-know ap-
proach for estimation of parametric models [5]. If the
model orders are chosen correctly, a quadratic cost func-
tion provides asymptotically efficient estimates when
the noise is Gaussian. The drawback is that, in general,
PEM requires solving a non-convex optimization prob-
lem, which can converge to minima that are only local.
Alternative methods, such as subspace [15] or instru-
mental variable [10] methods, do not suffer from non-
convexity, being useful to provide initialization points
for PEM.

Other methods first estimate a high order (non-
parametric) model. In general, this is an ARX model,
for which the global minimum of the prediction error
cost function can be found by least squares. Because
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it is high order, this estimate will have high variance.
However, it can be reduced to a parametric model de-
scription of low order. If the model reduction step is
performed according to an exact maximum likelihood
(ML) criterion, the low order estimates are asymp-
totically efficient [16]. This approach still requires, in
general, solving a non-convex optimization problem.

Another possibility to perform model order reduction
from a high order non-parametric model is with the
weighted null-space fitting (WNSF) method [2]. Al-
though it can be motivated by an exact ML criterion,
this criterion is not minimized explicitly. Rather, it
is interpreted as a weighted least squares problem by
fixing the parameters in the weighting.

One problemwith estimation of parametricmodels is the
choice of model orders. If this choice can sometimes be
based on physical intuition for the plant, the noise model
order is usually a more abstract concept. This has been
observed in [8], where a frequency domain method is pro-
posed to estimate a parametric model of the plant and a
non-parametric noise model. Because this approach does
not require a noise model order selection, it can be seen
as more user friendly.

If the data are obtained in open loop, the asymptotic
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properties of the plant and noise model estimates ob-
tained with PEM are uncorrelated, if the two transfer
functions are independently parametrized [5]. Therefore,
when a parametric noise model estimate is not of inter-
est, asymptotically efficient estimates of the plant can
be obtained as long as the noise model order is chosen
high enough for the system to be in the model set. The
limitation of choosing the noise model order arbitrarily
large with PEM is that, as more parameters are esti-
mated, the complexity of the problem increases, and it
is more difficult to find the global minimum.

However, if a non-parametric ARX model is estimated,
there are no issues with local minima, while the order
is arbitrarily large. Then, for the model reduction step,
an approximate asymptotic ML criterion allows sepa-
rating the estimation of the plant and noise model [16].
This allows obtaining asymptotically efficient estimates
of the plant in open loop without the high order struc-
ture of the noise model affecting the difficulty of the
problem. Nevertheless, the model reduction step still re-
quires solving a non-convex optimization problem. The
ASYM method [17] is based on this approach.

Another approach that does not require a parametric
noise model is the BJSM method [18]. This method uses
a non-parametric ARX model estimate to pre-filter the
input and output data, creating a pre-filtered data set
for which the output noise is approximately white. Then,
a noise model is no longer required when estimating the
plant based on the pre-filtered data set. Instead of ex-
plicitly minimizing a non-convex function, BJSM applies
the Steiglitz-McBride to the pre-filtered data set. In [18],
it is shown that this procedure is asymptotically effi-
cient in open loop. However, there are two limitations.
First, even if the true noise model is known exactly, a
non-parametric estimate is still required to achieve ef-
ficiency. Second, although the method does not apply
local non-linear optimization techniques, the number of
Steiglitz-McBride iterations needs to tend to infinity to
obtain a consistent estimate.

Our contributions are the following. First, we make a
connection between ASYM and BJSM, and propose
a method—termed Model Order Reduction Steiglitz-
McBride (MORSM)—connecting ideas from both. Sec-
ond, we show that MORSM is asymptotically efficient
in open loop with one iteration. Third, we perform a
simulation study, where we observe that MORSM has
better finite sample convergence properties than BJSM,
and that it is a viable alternative to PEM.

2 Preliminaries

Assumption 2.1 (True system) The system has
scalar input ut, scalar output yt and is subject to scalar
noise et. The relationship between these signals is given

by

yt = G◦(q)ut +H◦(q)et, (1)

whereG◦(q) andH◦(q) are rational functions in the time
shift operator q−1 (q−1xt := xt−1) according to

G◦(q) =
L◦(q)

F ◦(q)
=

l◦1q
−1 + · · ·+ l◦ml

q−m◦

l

1 + f◦
1 q

−1 + · · ·+ f◦
mf

q−m◦

f

,

H◦(q) =
C◦(q)

D◦(q)
=

1 + c◦1q
−1 + · · ·+ c◦mc

q−m◦

c

1 + d◦1q
−1 + · · ·+ d◦md

q−m◦

d

.

The transfer functions G◦, H◦, and 1/H◦ are assumed
to be stable. The polynomials L◦ and F ◦—as well as C◦

and D◦—do not share common factors.

Let the input sequence {ut} be a realization of a
stochastic process generated by a random sequence
{wt}. Also, let Ft−1 be the σ-algebra generated by
{es, ws, s ≤ t− 1}. Then, the following assumption ap-
plies for the input signal.

Assumption 2.2 (Input) The sequence {ut} is de-
fined by

ut = Fu(q)wt,

where Fu(q) is a stable and inversely stable finite dimen-
sional filter, where {wt} is independent of {et}, satisfying

E [wt|Ft−1] = 0, E
[

w2
t |Ft−1

]

= σ2
◦, |wt| ≤ C, ∀t

for some finite positive finite constant C.

Assumption 2.2 implies that the system is operating in
open loop. Also, Fu can be interpreted as the stable
minimum phase spectral factor of the input spectrum.

For the noise, the following assumption applies.

Assumption 2.3 (Noise) {et} is a stochastic process
that satisfies

E [et|Ft−1] = 0, E
[

e2t |Ft−1

]

= σ2
◦ , |et|10 ≤ C, ∀t

for some positive finite constant C.

3 The Prediction Error Method

The idea of the prediction error method (PEM) is to
minimize a cost function of the prediction errors. In this
section, we discuss how PEM can be used to estimate
a model of the system (2.1). First, we consider a Box-
Jenkins (BJ) model, and then a high order ARX model.
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3.1 Box-Jenkins model

In a Box-Jenkins model, G(q) and H(q) are rational
transfer functions parameterized independently, accord-
ing to

yt = G(q, θ)ut +H(q, α)et, (2)

where

G(q, θ) =
L(q, θ)

F (q, θ)
=

l1q
−1 + · · ·+ lml

q−ml

1 + f1q−1 + · · ·+ fmf
q−mf

,

H(q, α) =
C(q, α)

D(q, α)
=

1 + c1q
−1 + · · ·+ cmc

q−mc

1 + d1q−1 + · · ·+ dmd
q−md

,

and

θ =
[

f1 . . . fmf
l1 . . . lml

]⊤

, (3)

α =
[

c1 . . . cmc
d1 . . . dmd

]⊤

. (4)

We assume that H◦(q) is in the model set defined by
H(q, α) (i.e., mc ≥ m◦

c and md ≥ m◦

d). Moreover, the
order of the polynomials of G◦(q) are assumed to be
known (i.e., mf = m◦

f and ml = m◦

l ). For simplicity of
notation only, we also assume that m := mf = ml.

The one step ahead prediction errors of the BJ model (2)
are given by

εt(θ, α) =
D(q, α)

C(q, α)

[

yt −
L(q, θ)

F (q, θ)
ut

]

.

The parameter estimates using PEM with a quadratic
cost function are determined by minimizing the loss
function

VN (θ, α) =
1

N

N
∑

t=1

ε2t (θ, α), (5)

where N is the number of data samples. We denote

by θ̂PEM
N the estimate of θ obtained by minimizing (5).

Moreover, θ◦ corresponds to the vector θ evaluated at
the coefficients of F ◦(q) and L◦(q).

Since the system operates in open loop (Assump-
tion 2.2), it is well known that, when PEM is applied to
the model (2), the asymptotic covariance matrix of the
parameter estimate θ̂PEM

N is given by [5]

lim
N→∞

NE
[

(θ̂PEM
N − θ◦)(θ̂

PEM
N − θ◦)

⊤

]

= σ2
◦M

−1
CR,

where (we omit the argument of the transfer functions

for brevity)

MCR =
1

2πσ2
◦

∫ π

−π

[

− G◦

F◦H◦Γm

1
F◦H◦Γm

][

− G◦

F◦H◦Γm

1
F◦H◦ Γm

]∗

Φu dω,

with Γm(q) =
[

q−1 . . . q−m

]⊤

and Φu the spectrum of

the input {ut}.

When {et} is Gaussian, PEMwith a quadratic cost func-
tion is asymptotically efficient, meaning that M−1

CR cor-
responds to the Cramér-Rao lower bound—the smallest
possible asymptotic covariance matrix for a consistent
estimator [5]. Again, we recall that only the orders of
G◦(q) need to be chosen correctly to achieve efficiency,
while H(q, α) only needs to include H◦(q). Thus, if only
a model forG◦(q) is of interest, and the order ofH◦(q) is
unknown, mc and md can be let grow to infinity (guar-
anteeing that H◦(q) is in the model set) without asymp-
totically affecting the estimate of θ.

An important remark is that minimizing the loss func-
tion (5) is a non-convex optimization problem. There-
fore, a good initialization point is required to converge to
the global minimum. For Box-Jenkins models, an initial-
ization point that is sufficiently close to the global mini-
mum is particularly challenging to obtain. Moreover, the
problem becomes yet more challenging if we want to let
the order of the noise modelH(q, α) be arbitrarily large,
as PEMwill have increased problems with local minima.

3.2 High order ARX model

To circumvent the limitations of solving a non-convex
optimization problem, we consider the following ap-
proach. Note that the system (1) can be represented as

A◦(q)yt = B◦(q)ut + et, (6)

where

A◦(q) :=
1

H◦(q)
=: 1 +

∞
∑

k=1

a◦kq
−k,

B◦(q) :=
G◦(q)

H◦(q)
=:

∞
∑

k=1

b◦kq
−k

are stable transfer functions (by Assumption 2.1).

Consider also the ARX model

A(q, ηn)yt = B(q, ηn)ut + et,

where

A(q, ηn) = 1 +

n
∑

k=1

akq
−k, B(q, ηn) =

n
∑

k=1

bkq
−k,(7)
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and

ηn =
[

a1 . . . an b1 . . . bn

]⊤

.

Here, we assumed, without loss of generality, that A(q)
and B(q) are both modeled with n coefficients. Note
that (6) is not in the model set defined by (7) due to the
truncation by n coefficients. Nevertheless, the stability
assumption onG◦(q) and 1/H◦(q) implies that {a◦k} and
{b◦k} are sequences converging to zero. Thus, if n is cho-
sen large enough, (7) can model (6) with good accuracy.

An advantage of ARX models is that they are linear in
the model parameters. In particular, the PEM estimate
of ηn is obtained by minimizing the cost function

VN (ηn) =
1

N

N
∑

t=1

[A(q, ηn)yt −B(q, ηn)ut]
2 , (8)

which can be done by linear least squares. Thus, it can
be solved as follows. Write (7) as

yt = (ϕn
t )

⊤ηn + et,

where

ϕn
t =

[

−yt−1 . . . −yt−n ut−1 . . . ut−n

]⊤

. (9)

Then, the least squares estimate of ηn is given by

η̂n,lsN
:= [Rn

N ]−1rnN , (10)

where

Rn
N =

1

N

N
∑

t=1

ϕn
t (ϕ

n
t )

⊤, rnN =
1

N

N
∑

t=1

ϕn
t yt.

In the analysis, we will use the slightly modified estimate

η̂nN := [Rn
N,reg]

−1rnN , (11)

where

Rn
N,reg =

{

Rn
N if

∥

∥[Rn
N ]−1

∥

∥

2
< 2/δ

Rn
N + δ

2I2n otherwise
,

for some small δ > 0. The reason is that η̂nN is easier
to analyze statistically, while the first and second order

statistical properties of η̂n,lsN and η̂nN are asymptotically
identical [6].

It follows from Assumption 2.2 and Assumption 2.3
(see [6] for details),

η̂nN → η̄n := [R̄n]−1r̄n,

where R̄n and r̄n are the limits of Rn
N and rnN w.p.1,

respectively.

To guarantee that the true system (6) is asymptotically
in the model set defined by the ARXmodel (7), n should
be allowed to grow to infinity. Accordingly, we let the
model order depend on the sample size N . For our the-
oretical results, we use the following assumption.

Assumption 3.1 (Model order) It holds that

n(N) → ∞, N → ∞
n(N)4+δ/N → 0, N → ∞

for some δ > 0.

Introduce the notation η̂N := η̂
n(N)
N and, for future ref-

erence,

ηn◦ :=
[

a◦1 . . . a◦n b◦1 . . . b◦n

]⊤

, (12)

η◦ :=
[

a◦1 a◦2 . . . b◦1 b◦2 . . .
]⊤

. (13)

The asymptotic properties of η̂N have been established
in [6]. We will need the following result on the rate of
convergence of the ARX model.

Lemma 3.1 Assume that Assumptions 2.1, 2.2, 2.3 and
3.1 hold. Then with probability 1,

sup
ω

∥

∥

∥

∥

∥

[

A(ejω, η̂N )−A◦(ejω)

B(ejω, η̂N )−B◦(ejω)

]∥

∥

∥

∥

∥

2

= O(m(N)),

where

m(N) = n(N)
√

logN/N(1 + d(N)) + d(N)

and

d(N) :=

∞
∑

k=n(N)+1

|a◦k|+ |b◦k| ≤ C̄ρn(N), (14)

for some C̄ < ∞ and ρ < 1.

PROOF. See Appendix A.

Lemma 3.1 implies that, asN tends to infinity, the coeffi-
cients ofA(q, η̂N ) converge to those ofA◦(q) = 1/H◦(q),
and the coefficients of B(q, η̂N ) converge to those of
B◦(q) = G◦(q)/H◦(q). Therefore, B(q, η̂N )/A(q, η̂N )
can be used as a high order estimate of G◦(q), and
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1/A(q, η̂N ) as a high order estimate of H◦(q). We thus
define these high order estimates by

G(q, η̂N ) :=
B(q, η̂N )

A(q, η̂N )
, H(q, η̂N ) :=

1

A(q, η̂N )
. (15)

Despite the simplicity of ARX models, they are not ap-
propriate to model (2.1) for most practical uses. As the
order n is required to be arbitrarily large, the estimated
model will have unacceptably high variance.

Nevertheless, the high order ARX model estimate can
be used to obtain a model of low order, reducing the
variance. This can be done efficiently without re-using
the data. The reason is that the estimate η̂N and its
covariance are asymptotically a sufficient statistic for
our problem. To observe this, consider the infinite order
ARX model

yt = ϕ⊤

t η + et, (16)

where

ϕt :=
[

−yt−1 −yt−2 . . . ut−1 ut−2 . . .
]⊤

, (17)

η :=
[

a1 a2 . . . b1 b2 . . .
]⊤

. (18)

Then, the probability density function of yN := {yt}Nt=1
given η is

f(θ; yN) =

N
∏

t=1

1
√

2πσ2
◦

e
−

yt−ϕ⊤

t
η

2σ2
◦

= Ce
−

1

2σ2
◦

(

η⊤
∑

N

t=1
ϕtϕ

⊤

t η+2
∑

N

t=1
ϕ⊤

t ytη
)

e
−

1

2σ2
◦

∑

N

t=1
y2
t
.

(19)
where we treat σ2

◦ as a known constant (in this case, be-
cause it is a scalar, it does not influence the estimation
of the parameters of interest). Then, it follows from [4]

that RN :=
∑N

t=1 ϕtϕ
⊤
t and rN :=

∑N
t=1 ϕ

⊤
t yt form a

sufficient statistic for the data yN . Alternatively, since
η̂N = R−1

N rN , we can say that η̂N and RN are the suffi-
cient statistic. However, when n is finite, there is a bias
error induced by the truncation of the parameter se-
quences {ak} and {bk}. If that error is assumed to be
small, the estimate η̂nN will contain practically the same
information about the system dynamics as the data. If
the order n is allowed to tend to infinity as a function
of the sample size N , according to Assumption 3.1, then
the estimate η̂N is, asymptotically, a sufficient statistic.
Thus, the data could in principle be disregarded, and
η̂N alone be used to obtain an estimate of a lower order
model that is asymptotically efficient.

4 Model Reduction

Having estimated a high order ARX model, we are in-
terested in using this estimate to obtain a low order es-

timate G(q, θ). In this section, we discuss available ap-
proaches to do so.

4.1 Exact Maximum Likelihood

Being a sufficient statistic, η̂N and its covariance can be
used to obtain an estimate of θ that is asymptotically ef-
ficient. This can be done using an exactML criterion [16].
Let ηn(θ, α) be the parameter vector ηn obtained from
θ and α, satisfying the relations

A(q, η) =
1

H(q, α)
, B(q, η) =

G(q, θ)

H(q, α)
. (20)

This procedure consists in minimizing

[η̂N − ηn(θ, α)]
⊤
[cov (η̂N )]

−1
[η̂N − ηn(θ, α)] , (21)

where cov (η̂N ) denotes the covariance of the estimated
vector η̂N . Since this covariance matrix is in general un-
known, in practice the cost function (21) requires an ap-
proximation. We consider two possibilities that do not
affect the asymptotic properties of the obtained esti-
mates.

One possibility consists in replacing [cov (η̂N )]−1 by a
consistent estimate—for example, Rn

N [16]. In this case,
we minimize

[η̂N − ηn(θ, α)]⊤ Rn
N [η̂N − ηn(θ, α)] , (22)

which yields asymptotically efficient estimates ofG(q, θ)
and H(q, α). Because ηn(θ, α) is nonlinear in general,
minimizing (22) is a non-convex optimization problem.

Another possibility is to write the covariance matrix as
function of the low order parameters θ and α—denoted
Rn(θ, α) (see [16] for details). In this case, we minimize
the criterion

[η̂N − ηn(θ, α)]
⊤
Rn(θ, α) [η̂N − ηn(θ, α)] , (23)

Although minimizing (23) seems, at first sight, more
complicated than minimizing (22), it is observed in [16]
that the cost function (23) can be approximated by an
asymptotic ML criterion that allows separating the es-
timation of G(q, θ) and H(q, α), while still providing
asymptotically efficient estimates.
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4.2 Asymptotic Maximum Likelihood (ASYM)

As shown in [16], minimizing (23) is asymptotically the
same as minimizing

∫ 2π

0

∣

∣G(eiω , η̂N )−G(eiω , θ)
∣

∣

2 Φu(e
iω)

|H(eiω, η̂N )|2
dω

+
σ̂2

2π

∫ 2π

0

∣

∣H(eiω, η̂N )−H(eiω, α)
∣

∣

2

|H(eiω, η̂N )|2
dω, (24)

where σ̂2 is a consistent estimate of σ2
◦ . Because the first

term in (24) is only dependent onG(q, θ) and the second
term onH(q, α),G(q, θ) can be estimated by minimizing
the first term. Then, the minimization problem we are
interested in becomes

VN (θ)=

∫ 2π

0

∣

∣G(eiω , η̂nN )−G(eiω, θ)
∣

∣

2 Φu(e
iω)

|H(eiω, η̂N )|2
dω.

(25)

The idea of the ASYM method [17] is to minimize the
time domain equivalent to (25) for finite sample size:

VN (θ) =
1

N

N
∑

t=1

[(

B(q, η̂N )

A(q, η̂N )
−G(q, θ)

)

A(q, η̂N )ut

]2

.

(26)
Minimizing (26) is still a non-convex optimization prob-
lem. However, it is pointed out in [17] that this minimiza-
tion problem has an advantage over directly estimating
G(q, θ) using PEM, which makes the method numeri-
cally more reliable. Because the output is not used ex-
plicitly in (26), and the noise contribution is only present
indirectly through the high order estimates, the influ-
ence of the disturbance is reduced.

4.3 BJSM method

In alternative to using local non-linear optimization
techniques, the BJSM method uses the Steiglitz-
McBride iterations. The idea of BJSM is to first es-
timate a high order ARX model and then apply the
Steiglitz-McBride method [12] to a data set pre-filtered
by the ARX model estimate. The estimates obtained
are asymptotically efficient in open loop. Because BJSM
uses the Steiglitz-McBride, we start by reviewing the
latter.

4.3.1 Steiglitz-McBride

The setting for the Steiglitz-McBride algorithm is when
the transfer function H◦(q) equals one (i.e., C◦(q) =
D◦(q) = 1). The objective is to estimate L(q, θ) and
F (q, θ).

Consider the following three steps. First, an ARX model

F (q, θ)yt = L(q, θ)ut + et

is estimated using least squares, providing an initilial-

ization estimate θ̂0N . Second, the output and input are
filtered by

yft =
1

F (q, θ̂1N )
yt, uf

t =
1

F (q, θ̂1N )
ut.

Third, least squares is applied to the ARX model

F (q, θ)yft = L(q, θ)uf
t + et,

providing a new estimate—θ̂1N . Then, we can continue
to iterate by repeating Steps 2 and 3. We define the

estimate obtained at iteration k by θ̂kN .

Notice that, since the true system has an OE structure,
and we are estimating an ARX model, we are actually
minimizing, in Step 1, the function

VN (θ) =
1

N

N
∑

t=1

[F (q, θ)yt − L(q, θ)ut]
2
, (27)

which, evaluated at the true parameter θ◦, equals

VN (θ◦) =
1

N

N
∑

t=1

[F (q, θ◦)et]
2
. (28)

From (28), we observe the true parameter θ◦ does not
correspond to the cost function of a white sequence.
Consequently, the initialization estimate θ̂0N is not con-
sistent. However, at iteration k we have, evaluated at
θ = θ◦,

VN (θ◦) =
1

N

N
∑

t=1

[

F (q, θ◦)

F (q, θ̂kN )
et

]2

. (29)

So, assuming convergence to the true parameters (i.e.,

θ̂kN → θ◦, as k → ∞ and N → ∞), (29) asymptotically
corresponds to (5) for an OE model structure.

Convergence of the Steiglitz-McBride has been studied
in [14], where it is shown that the method is locally con-
vergent when the additive output noise is white. More-
over, it will be globally convergent if the signal-to-noise
ratio is sufficiently large. Assuming convergence, the es-
timates are asymptotically Gaussian distributed. How-
ever, in general, the covariance of the estimated param-
eters does not asymptotically attain M−1

CR.

The Steiglitz-McBride is thus an attempt to mini-
mize (5), but it only does so consistently with additive
white noise, and even then it is not asymptotically
efficient.
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4.3.2 BJSM

In [18], the Box-Jenkins Steiglitz-McBride (BJSM) al-
gorithm is introduced. This algorithm copes with two
limitations of the Steiglitz-McBride. First, it is consis-
tent for systems with BJ structure, instead of only OE.
Second, it is asymptotically efficient for open loop data.

The method uses the following procedure. First, an ARX
model (7) is estimated with least squares. Second, the
original data set is pre-filtered by A(q, η̂N ). Third, the
Steiglitz-McBride algorithm is applied to the pre-filtered
data set.

Recall that, to be convergent, the Steiglitz-McBride al-
gorithm requires that H◦(q) = 1. The main idea of
BJSM is thus to useA(q, η̂N ) as an estimate of [H◦(q)]−1

and pre-filter the data according to

ypft = A(q, η̂N )yt, upf
t = A(q, η̂N )ut.

Then, the pre-filtered data satisfies

ypft =
L◦(q)

F ◦(q)
upf
t +A(q, η̂N )H◦(q)et, (30)

which asymptotically is according to, due to Lemma 3.1,

ypft ≈ L◦(q)

F ◦(q)
upf
t + et. (31)

Since (31) is of OE structure, the Steiglitz-McBride al-

gorithm can be applied to the data set {ypft , upf
t }.

Notice that, if we were to apply PEM to the pre-filtered
data set, we would minimize, motivated by (31),

VN (θ) =
1

N

N
∑

t=1

(

ypft − L(q, θ)

F (q, θ)
upf
t

)2

. (32)

To avoid an explicit non-convex minimization problem,
we use the Steiglitz-McBride method instead. Although
the Steiglitz-McBride is not asymptotically efficient, the
BJSM method is when used with open loop data [18].

However, not all the information in η̂N is being used,
as the filtering (30) only uses A(q, η̂N ). In other words,
the ARX model is not used as a sufficient statistic for
this problem. For the method to still be asymptotically
efficient, the output data are used when constructing the
pre-filtering. This leads to two limitations.

The first is a counter-intuitive result. Suppose that
H◦(q) = 1 (i.e., the true system is already of OE struc-
ture). Then, we have that A◦(q) = 1, and estimating
a finite impulse response (FIR) model would suffice to
asymptotically model the true system. However, this

would maintain the data set unchanged when applying
the filtering (30), and BJSM would simply be reduced
to the Steiglitz-McBride method, which is not asymp-
totically efficient. If, on the other hand, it is not as-
sumed that A◦(q) = 1 and an estimate A(q, η̂N ) is still
computed, BJSM will be asymptotically efficient. Thus,
although an FIR model is asymptotically a sufficient
statistic for a system of OE structure (like the ARX
model is for BJ structures) it is not possible to make use
of this information when applying the BJSM method,
since it does not exploit the full statistical properties of
the high order model.

As for the second limitation, we observe that although
BJSMavoids solving a non-convex optimization problem
by applying the Steiglitz-McBride algorithm, it has the
disadvantage of requiring the number of iterations of the
Steiglitz-McBride to tend to infinity in order to provide
consistent and asymptotically efficient estimates [18]. To
bypass this problem but still avoid a non-convex mini-
mization procedure, we use the Steiglitz-McBride with
the ASYM method. This will allow us to obtain an
asymptotically efficient estimate in one iteration.

5 Model Order Reduction Steiglitz-McBride

The objective of our approach is to minimize (26) with-
out using a non-convex optimization method. To do so,
we use an approach that combines ideas from ASYM
and BJSM.

First, we write (26) as

VN (θ) =
1

N

N
∑

t=1

[

B(q, η̂N )ut −
L(q, θ)

F (q, θ)
A(q, η̂N )ut

]2

.

(33)
Then, we notice that (33) has the same form as (32) if
we define

ypft := B(q, η̂N )ut, upf
t := A(q, η̂N )ut, (34)

and thus the same idea (i.e., applying the Steiglitz-

McBride to {ypft , upf
t }) can be used.

The only difference between this approach and BJSM is
in the pre-filtered output. Comparing (34) and (30), we
observe that upf

t are defined similarly, but ypft are differ-
ent. The difference lies in the true output not being used
to construct the new pre-filtered data set. Rather, it is
simulated from the input and the ARX model estimate.
Indeed, we can simulate the output with

yst :=
B(q, η̂N )

A(q, η̂N )
ut, (35)
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and then apply the same filter as in (30), but on the
simulated output, according to

ypft = A(q, η̂N )yst = B(q, η̂N )ut, (36)

obtaining the proposed pre-filter (34).

In summary, the proposed method is as follows:

(1) estimate an ARXmodel using the input-output data
{ut, yt}, t = 1, . . . , N , according to (10);

(2) construct the pre-filtered data {upf
t , ypft }, according

to (34);

(3) apply the Steiglitz-McBride method with {upf
t , ypft }

to obtain estimates L(q, θ̂N ) and F (q, θ̂N ) of L◦(q)
and F ◦(q), respectively.

Note that the pre-filtered data set (34) only depends on
the original output data {yt} through the least squares
estimate η̂N . With this method, we use the high order
ARX model as an asymptotic sufficient statistic for our
problem, and disregard the data without loss of informa-
tion. Indeed, as will be shown in the next section, this
procedure is asymptotically efficient for open loop data.

Moreover, there are two advantages for disregarding the
data after the high order ARX model has been esti-
mated. Although these are formally shown in the next
section, we observe them here, supported by intuitive
explanations.

First, the pre-filter (34) uses the complete statistical in-
formation contained in the estimate η̂N . So, if the noise
contribution affecting the true system (1) is white, a
high-order FIR model can be estimated instead of an
ARX. In this case, A(q, η̂N ) = 1.

Second, this procedure asymptotically (in N) only re-
quires one iteration. To intuitively understand why this
is the case, we recall why the Steiglitz-McBride is an it-
erative method. Note that the initialization step of the
Steiglitz-McBride minimizes (27), which, when evalu-
ated at the true parameters, as in (28), does not corre-
spond to a cost function of white sequence. Therefore,

the initialization estimate θ̂0N is biased. Then, we start it-
erating. At the first iteration, the cost function evaluated

at θ◦ is given by (29) with F (q, θ̂0N ). Because F (q, θ̂0N )
is biased, the true parameter will still not correspond
to the cost function of a white sequence. Therefore, the

new estimate θ̂1N will not be consistent either. However,
by continuing to iterate, it can be shown that, under the

conditions observed in [13], θ̂kN → θ◦, as k → ∞ and
N → ∞. Concerning the original BJSM method, since
the pre-filtered data is according to (30), it is asymp-
totically approximately an OE model structure, and a
similar procedure takes place.

On the other hand, the alternative pre-filtering, which
disregards the original data, satisfies

ypft =
L◦(q)

F ◦(q)
upf
t +

(

B(q, η̂N )

A(q, η̂N )
− L◦(q)

F ◦(q)

)

upf
t . (37)

This is a noise-free equation, except for the noisy pa-
rameters in the ARX model. However, from Lemma 3.1,
the second term in (37) tends to zero asymptotically.
As consequence, the variance of the error sequence be-
ing minimized by the Steiglitz-McBride iterations disap-
pears asymptotically, and only one iteration is required.

We observe that the proposed method essentially con-
sists of applying the Steiglitz-McBride algorithm to per-
form model order reduction based on an asymptotic ML
criterion. We will thus refer to the method as Model Or-
der Reduction Steiglitz-McBride (MORSM). The idea
of using the Steiglitz-McBride to, in some sense, per-
form model order reduction, is not new. Variants of
the Steiglitz-McBride method have been applied to esti-
mate rational filters from an impulse response estimate,
instead of applying the method directly to data (see,
e.g., [1, 7, 9]). However, although some of these proce-
dures are in some sense optimal under specific condi-
tions, we consider a quite general system identification
problem and motivate the application of the method
based on an ML criterion. This, as we proceed to show,
not only provides asymptotically efficient estimates un-
der a quite general class of systems and external signals,
but also does so in one iteration.

6 Asymptotic Properties

In this section, we analyze both the convergence and
asymptotic covariance of the proposed method. To de-
rive these results, we will need a formal expression for
the estimate of θ at iteration k+1 of the MORSM algo-
rithm. Define

yt(η, θ) =
B(q, η)

F (q, θ)
ut, yt(η◦, θ) =

B◦(q)

F (q, θ)
ut,

ut(η, θ) =
A(q, η)

F (q, θ)
ut, yt(η◦, θ) =

A◦(q)

F (q, θ)
ut,

and

ξt(η, θ) =
L◦(q)

F ◦(q)

B(q, η) −B◦(q)

B◦(q)
ut(η, θ)

−A(q, η)−A◦(q)

A◦(q)
yt(η, θ).

The same definition also applies to vector valued signals,
such as (9).

Using that the pre-filtered data set consists of filtered
versions of ut and that G(q) can be represented both
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using L◦(q) and F ◦(q) as well as using B◦(q) and A◦(q),
we have that

ut =
1

B(q, η̂N )
ypft =

L◦(q)A◦(q)

F ◦(q)B◦(q)

1

A(q, η̂N )
upf
t . (38)

Filtering (38) by

F ◦(q)
A(q, η̂N )B(q, η̂N )

A◦(q)F (q, η̂N )
,

we arrive at the noise-free equation

F ◦(q)
A(q, η̂N )

A◦(q)
yt(η̂N , θ̂kN ) = L◦(q)

B(q, η̂N )

B◦(q)
ut(η̂N , θ̂kN )

relating the pre-filtered data. Equivalently,

F ◦(q)yt(η̂N , θ̂kN ) = L◦(q)ut(η̂N , θ̂kN ) + F ◦(q)ξt(η̂N , θ̂kN ),

which can be written in regression form as

yt(η̂N , θ̂kN ) = [ϕm(η̂N , θ̂kN )]⊤θ◦ + F ◦(q)ξt(η̂N , θ̂kN ). (39)

Given θ̂kN , the next parameter estimate in the Steiglitz-
McBride iterations θ̂k+1

N , is defined as the least squares
estimate of θ◦ in the linear regression (39):

θ̂k+1
N = [Rm(η̂N , θ̂kN )]−1rm(η̂N , θ̂kN ), (40)

where

Rm(ηn, θ) =
1

N

N
∑

t=m+1

ϕm
t (ηn, θ)(ϕm

t (ηn, θ))⊤,

rm(ηn, θ) =
1

N

N
∑

t=m+1

ϕm
t (ηn, θ)yt(η

n, θ).

Notice that (39) is a linear regression form of (37) with
the notable difference that the error made in the ARX
model enters linearly into ξt(η̂N , θ̂kN ). As before, the
ARX model error tends to zero asymptotically. This is,
in essence, what enables the following results.

Theorem 6.1 Let Assumptions 2.1, 2.2, 2.3, and 3.1
hold. Then,

θ̂kN → θ◦ asN → ∞, w.p. 1, for all k ≥ 0

PROOF. See Appendix B.

Theorem 6.1 implies that the proposed algorithm
achieves consistency in the initialization estimate—that

is, θ̂0N is a consistent estimate of θ◦. This was not the
case for the BJSM algorithm.

For the asymptotic covariance, we have the following
theorem.

Theorem 6.2 Let Assumptions 2.1, 2.2, 2.3, and 3.1
hold. Then,

lim
N→∞

NE
[

(θ̂kN − θ◦)(θ̂
k
N − θ◦)

⊤

]

= σ2
◦M

−1
CR,

and
√
N(θ̂kN − θ◦) ∼ AsN(0, σ2

◦M
−1
CR) for k ≥ 1, where

N stands for the normal distribution.

PROOF. See Appendix D.

From Theorem 6.2, we observe that the proposed
method has the same asymptotic covariance as PEM
with Gaussian noise (6). Therefore, it is asymptotically
efficient with open loop data. Moreover, the asymptotic
efficient estimate is obtained in one iteration, at k = 1.

7 Simulations

In this section, we perform two Monte Carlo simula-
tions to study the performance of the method. First,
we illustrate how it converges in one iteration of the
Steiglitz-McBride, while BJSM does not. Then, we per-
form a study with random systems, and observe that
the method often has better finite sample convergence
properties than PEM.

7.1 One iteration scheme

In the first simulation, we compare MORSM and BJSM.
The practical difference between these methods is in the
pre-filtering only. In particular, MORSM does not use
the noisy output to construct the pre-filtered data set.
The consequence is that the method provides asymptot-
ically efficient estimates in one iteration.

For the simulation, the data are generated by

yt =
q−1 + 0.1q−2

1− 1.2q−1 + 0.6q−2
ut +

1 + 0.7q−1

1− 0.9q−1
et. (41)

One hundred Monte Carlo simulations are performed
with eight sample sizes logarithmically spaced between
N = 200 andN = 20000. The sequence {ut} is obtained
by

ut =
1

1− q−1 + 0.89q−2
wt, (42)

where {wt} and {et} are independent Gaussian white
sequences with unit variance.
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Fig. 1. Average RMSE as function of sample size for several
methods, obtained from 100 Monte Carlo runs with a fixed
system.

We compare PEM, BJSM (one and 100 iterations), and
MORSM (one and 100 iterations). All methods estimate
a plant parameterized with the correct orders, and PEM
also estimates a correctly parameterized noise model.
For BJSM and the proposed method, an ARX model of
order 50 is estimated in the first step. As the objective of
this simulation is to observe convergence and asymptotic
variance properties, PEM is started at the true param-
eters, and all methods assume known initial conditions.

The results are presented in Fig. 1, where the average
root mean square error (RMSE) of the impulse response
from 1000Monte Carlo runs is presented for each sample
size. The RMSE is given by

RMSE = ‖g◦ − ĝ‖2 , (43)

where g◦ is the impulse response of G◦(q) and ĝ is the
impulse response of the estimated plant model. In Fig. 1,
we observe that MORSM and BJSM perform similarly
with 100 iterations for all the sample size range used.
MORSM performs slightly worse with one iteration than
with 100 for small sample sizes, but they have the same
performance for largerN . However, the same is not true
for BJSM with one iteration, for which the RMSE does
not even decrease with increasing sample size.

In conclusion, if a sufficiently amount of iterations are
performed, both MORSM and BJSM attain the asymp-
totic covariance of PEM. However, BJSM theoretically
needs the Steiglitz-McBride iterations to tend to infin-
ity, while MORSM only needs one iteration.

7.2 Comparison with PEM

According to a prediction error criterion, the best model
is the one that minimizes a cost function of the predic-

tion errors. The estimate corresponding to the minimizer
of this cost function is asymptotically efficient, meaning
that is has asymptotically the minimum possible covari-
ance for a consistent estimator. The limitation is that
this cost function is, in general, non-convex. Seeking the
global minimum requires local non-linear optimization
techniques, and it is not guaranteed to be found. As the
number of parameters to estimate increases, PEM has
increasingly more difficulty in finding the global mini-
mum.

In the following simulation, we will compare the perfor-
mance of PEM and the proposed method with randomly
generated systems, with structure

yt =
l◦1q

−1 + l◦2q
−2 + l◦3q

−3 + l◦4q
−4

1 + f◦
1 q

−1 + f◦
2 q

−2 + f◦
3 q

−3 + f◦
4 q

−4
ut

+
1+ c◦1q

−1 + c◦2q
−2 + c◦3q

−3 + c◦4q
−4

1 + d◦1q
−1 + d◦2q

−2 + d◦3q
−3 + d◦4q

−4
et, (44)

where {ut} is given as in the previous simulation, and
{et} is Gaussian white noise with variance chosen to
obtain a signal-to-noise ratio

SNR =

∑N
t=1(ut)

2

∑N
t=1(H

◦(q)et)2
= 10. (45)

The coefficients of L◦(q) are generated from a uniform
distribution, with values between −1 and 1. The coeffi-
cients of the remaining polynomials are generated such
that F ◦(q), C◦(q), and D◦(q) have all roots inside a
half-ring in the unit disc with a radius between 0.7 and
0.9, with positive real part. We do this with the objec-
tive of studying a particular class of systems: namely,
the systems are effectively of fourth order (i.e., no poles
are considerably dominant over others), they can be ap-
proximated by ARX models roughly of orders between
30 and 100, and they resemble physical systems.

An important practical aspect in implementing the pro-
posed method is how to choose the ARX model order, in
case we do not previously have information of an appro-
priate order to choose. As we have seen, theoretically the
ARX model order should tend to infinity as function of
the sample size. However, for practical purposes it is suf-
ficient to choose an order that can correctly capture the
dynamics of the true system. We then propose the fol-
lowing procedure to choose the order of the ARX model.
Since our objective is to minimize the loss function (5)
using an indirect approach, we repeat the estimation for
a grid of ARX model orders, and choose the low order
model that minimizes (5). Since we do not compute a
low order noise model, the highest order ARX polyno-
mialA(q, η̂N ) is used instead of 1/H(q, α) when comput-
ing this loss function. Although this is a very noisy esti-
mate, the error induced will be the same for every com-
putation, and should not have a considerable influence
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in choosing the best model. For the class of systems we
consider, we choose the ARX model order from a grid of
values between 25 and 125, spaced with intervals of 25.

Moreover, when more than one iteration is used, the
same criterion can be applied to optimize over the num-
ber of iterations—that is, we choose the model obtained
at the iteration that minimizes the cost function (5).

We compare the following methods:

• the prediction error method, initialized at the true
parameters (PEM true);

• the prediction error method, initialized with the
standard MATLAB procedure (PEM);

• the Box-Jenkins Steiglitz-McBride method, with 20
iterations (BJSM20);

• the Model Order Reduction Steiglitz-McBride
method, with 20 iterations (MORSM20);

• theModel OrderReduction Steiglitz-McBride, with
one iteration (MORSM1).

PEM stops with a maximum of 1000 iterations and a
function tolerance of 10−5, and estimates initial condi-
tions. MORSM and BJSM truncate initial conditions.
Note that a procedure to estimate initial conditions for
this type of methods has been proposed in [3], but it is
only applicable if the plant and noise model share the
same poles (e.g., ARMA, ARMAX) or if the noise model
poles are known (e.g., OE), which is not the case of BJ
models.

The performance of each method is evaluated by calcu-
lating the FIT of the impulse response of the plant, given
by, in percent,

FIT = 100

(

1− RMSE

‖g◦ − ḡo‖

)

, (46)

where ḡo is the average of g◦.

The results are presented in Fig. 2, with the average
FIT as function of sample size. We assume that PEM,
when initialized at the true parameters, converges to the
global optimum. Comparing PEM initialized at the true
parameters and with the standard MATLAB procedure,
we conclude that the latter must sometimes fail to reach
the global optimum.

With 20 iterations, MORSM does not seem to reach the
global minimum of the prediction error cost function
for small sample sizes. However, for sample sizes around
4000 and larger, this minimum seems to be attained since
MORSM performs similar to PEM initialized at the true
parameters. This suggests thatMORSMmay be a viable
alternative to PEM when PEM has difficulty in finding
the global minimum.

103 104
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Fig. 2. Average FIT for several methods, obtained from 100
Monte Carlo runs with random systems.

With only one iteration, MORSM performs worse than
with 20 iterations for the range of sample sizes used,
but their performances becomes closer as larger sam-
ple sizes are used. Theoretically, we have shown that
MORSM only requires one iteration to provide asymp-
totically efficient estimates. However, we observe that in
practice (i.e., for finite sample size), MORSM performs
better with more iterations, comparing MORSM1 and
MORSM20 in Fig. 2. The fact that in practice MORSM
requires more than one iteration to converge does not
render it irrelevant in comparison to BJSM. As we ob-
serve in Fig. 2, BJSM with 20 iterations does not attain
the same asymptotic performance of MORSM because
20 iterations do not seem to be sufficient for BJSM to
converge in this simulation, while they are sufficient for
MORSM.

8 Conclusion

In this paper, we propose a least squares method for
estimation of models with a plant parameterized by a
rational transfer function and a non-parametric noise
model.We show that themethod provides consistent and
asymptotically efficient estimates of the plant if data are
obtained in open loop.

Essentially, the method performs model order reduction
based on an asymptotic ML criterion using the Steiglitz-
McBride method. We thus name it Model Order Re-
duction Steiglitz-McBride (MORSM). The method uses
ideas from the ASYM and BJSM methods. However,
unlike ASYM, we avoid a non-convex optimization pro-
cedure by applying Steiglitz-McBride; unlike BJSM, we
propose a procedure that only requires one iteration to
provide asymptotically efficient estimates.

Finally, we perform two simulation studies to analyze
the performance of the method, fromwhich the following
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are observed. First, MORSM is asymptotically efficient
in one iteration, while BJSM is not. Second, even when
extra iterations are required for convergence with finite
sample sizes, MORSM still converges in less iterations
than BJSM. Third, MORSMmay be a viable alternative
to PEM, specially when PEM has difficulty in finding
the global minimum.

Future work will include application of MORSM for
closed loop and for estimation of systems embedded in
networks.

A Proof of Lemma 3.1

The result follows from Theorem 3.1 in [6]. Next, we
verify the conditions of that theorem. Assumption 2.1
and the finite dimensionality of G◦ and H◦ implies that

max(|ak|, |bk|) ≤ Cρk (A.1)

for some C < ∞ and 0 < ρ < 1. This implies that Con-
dition S1 holds. Furthermore, the bound (A.1) implies
the inequality in (14) for some C̄ < ∞. Assumption 2.3
clearly implies Condition S2 (for any p ≤ 5). Assump-
tion 3.1 implies Conditions D1 and D3. Thus all condi-
tions in Theorem 3.1 of [6] have been verified and the
result in the lemma follows from this theorem.

B Proof of Theorem 6.1

Using Parseval’s formula, we have

R̄(θ) =
1

2π

∫ π

−π

[

−B◦Γm

A◦Γm

][

−B◦Γm

A◦Γm

]∗

Φu

|F (θ)|2 dω (B.1)

We notice that R̄(θ) > 0 whenever θ is in the stability
region for the coefficients of polynomials of degree m

S̄ := {θ : F (z, θ) = 0 ⇒ |z| < 1} ⊂ R
2m (B.2)

We introduce the notation

f(N) = O(g(N))

to mean that f(N) decays to zero with the rate g(N),
i.e., that there exists some positive constants C and N0

such that for all N ≥ N0,

‖f(N)‖ ≤ C|g(N)| as N → ∞.

From Lemma 3.1 it follows that

Rm(η̂N , θ)− R̄(θ) = O(m(N)). (B.3)

By standard continuity arguments, with probability 1

Rm(η̂N , θ) > 0

for large enough N . Hence, for N large enough, using
(39) in (40)

θ̂k+1
N = θ◦ + [Rm(η̂N , θkN )]−1

· 1
N

N
∑

t=m+1

ϕm
t (ηn, θkN )F ◦(q)ξt(η̂N , θ̂kN ). (B.4)

Now, since {ut} is uniformly bounded and 1/F (q, θ) is
uniformly stable, it follows that

∥

∥ϕm
t (η̂N , θkN )

∥

∥ ≤ C1,

for some C1 < ∞, and furthermore, by Lemma 3.1, it
follows that

F ◦(q)ξt(η̂N , θ̂kN ) = O(m(N)).

It thus follows that

θ̂k+1
N − θ◦ = O(m(N)), (B.5)

for any k ≥ 0 and

∥

∥

∥
θ̂k+1
N − θ◦

∥

∥

∥
→ 0, as N → ∞, w.p. 1.

C Auxiliary lemmas

This section includes a few results needed for the proof
of Theorem 6.2 in Section D.

Lemma C.1 Assume that X(q) =
∑n

k=1 xkq
−k and

Z(q) =
∑n

l=1 zlq
−l are stable filters and let v(t) be quasi-

stationary. Then,

∥

∥

∥

∥

∥

1

N

N
∑

t=m+1

X(q)v(t)Z(q)v(t)

∥

∥

∥

∥

∥

2

≤ ‖X‖2 ‖Z‖2 C

for some C < ∞.
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PROOF.

‖ 1

N

N
∑

t=m+1

X(q)v(t)Z(q)v(t)

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

1

N

N
∑

t=m+1

n
∑

k=1

xkvt−k

n
∑

l=1

zlvt−l

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

n
∑

k=1

xk

n
∑

l=1

zl
1

N

N
∑

t=m+1

vt−kvt−l

∥

∥

∥

∥

∥

2

≤
n
∑

k=1

|xk|2
n
∑

l=1

|zl|2
∣

∣

∣

∣

∣

1

N

N
∑

t=m+1

vt−kvt−l

∣

∣

∣

∣

∣

2

≤
n
∑

k=1

|xk|2
n
∑

l=1

|zl|2
∣

∣RN
vv(k − l)

∣

∣

2

≤ ‖X‖22 ‖Z‖22 C2,

where the last equality is due to the quasi stationarity
of v(t).

Lemma C.2 Let Assumptions 2.1, 2.2, 2.3, and 3.1 be
in force. Let Υn be an m× 2n deterministic matrix, with
m fixed. Then, we have that

√
NΥn(η̂N − η̄n) ∼ AsN(0, P ), (C.1)

where

P = σ2
◦ lim
n→∞

Υn[R̄n]−1(Υn)⊤, (C.2)

if the limit exists.

PROOF. See [6, Theorem 7.3].

Lemma C.3 Let {xn} be a sequence of random vari-
ables that is asymptotically Gaussian distributed—
{xn} ∼ AsN(0, P ). Let {Mn} be a sequence of random
square matrices that converge in probability to a non-
singular matrix M , and {bn} be a sequence of random
vectors that converges in probability to b. Also, let

yn = Mnxn + bn. (C.3)

Then, yn converges in distribution to N (b,MPM⊤).

PROOF. See [11, Lemma B.4].

Lemma C.4 Let Sn be the subspace of L2
2 spanned by

the rows of

[

−F1F3Γn F2Γn

F3Γn 0

]

, (C.4)

where

Γn(q) =
[

q−1 . . . q−n

]

, (C.5)

Fi(q) =

∞
∑

k=0

f i
kq

−k. (C.6)

Suppose that F1, F2 and F3 are exponentially stable,
i.e., for an exponentially stable Fi

|f i
k| ≤ Cλk, for some C < ∞, λ < 1, (C.7)

and that there is a causal exponentially stable inverse

F̃2(q) =

∞
∑

k=0

f̃2
kq

−k, |f̃2
k | < Cλk. (C.8)

Let γ = [
∑∞

k=1 dkq
−k 0 ] be exponentially stable. Then

‖γ −PSn
[γ]‖2 ≤ Cλn, for some C < ∞, λ < 1. (C.9)

PROOF. We will construct an explicit approximation
to γ that belongs to Sn. Let

F̃uγ =
[

∑∞

l=1 βlz
−l 0

]

,

which is exponentially stable since both γ and F̃2 are
exponentially stable. Take as approximation for γ

γ̂n =
[

∑n
l=1 βlF2(z)z

−l 0
]

,

which by construction belongs to SΨ . Introduce the no-

tation γ =
[

γ1 γ2

]

. Hence

∥

∥γk −PSΨ̃
[γ]
∥

∥

2
≤ ‖γ − γ̂n‖2

=

∥

∥

∥

∥

∥

γ1 −
n
∑

l=1

βlF2(z)z
−l

∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

F2(z)

(

F̃2(z)γ1 −
n
∑

l=1

βlz
−l

)
∥

∥

∥

∥

∥

2

≤ ‖F2(z)‖2

∥

∥

∥

∥

∥

∞
∑

l=n+1

βlz
−l

∥

∥

∥

∥

∥

2

≤ Cλn,

for some C < ∞ and λ < 1 since F2 and F̃2γ are expo-
nentially stable.

D Proof of Theorem 6.2

We start by using (B.4) to write

√
N(θ̂k+1

N − θ◦) = M−1
N xN ,

13



where

MN = Rm(η̂N , θkN )

xN =
1√
N

N
∑

t=m+1

ϕm
t (η̂N , θkN )F ◦(q)ξt(η̂N , θ̂kN ).

From (B.3) and Theorem 6.1, for k ≥ 1, we have that

MN → MCR, as N → ∞, w.p. 1.

Assume for now (we will prove it later) that

xN ∼ AsN(0, P ).

Then, using Lemma C.3, we have that

√
N(θ̂k+1

N − θ◦) ∼ AsN(0,M−1
CRPM−1

CR). (D.1)

D.1 xN

We will now establish the asymptotic distribution and
covariance of xN . To this end, we first define

Φm(ηn, θ) :=
1

F (q, θ)

[

−B(q, ηn)Γm

A(q, ηn)Γm

]

,

Ξm(ηn, θ) :=
F ◦(q)

A◦(q)F (q, θ)

·
[

−B◦(q) A◦(q)
]

[

A(q, ηn)−A◦(q)

B(q, ηn)−B◦(q)

]

.

Then we rewrite ξt(η̂N , θkN ) as

ξt(η̂N , θkN ) = − B(q, η̂N )

A◦(q)F (q, θkN )
(A(q, η̂N )−A◦(q))ut

+
A(q, η̂N )

A◦(q)F (q, θkN )
(B(q, η̂N )−B◦(q))ut

= − B◦(q)

A◦(q)F (q, θkN )
(A(q, η̂N )−A◦(q))ut

+
A◦(q)

A◦(q)F (q, θkN )
(B(q, η̂N )−B◦(q))ut

=
1

F ◦(q)
Ξm(η̂N , θkN )ut.

We can thus express xN as

xN =
1√
N

N
∑

t=m+1

Φm(η̂N , θkN )utΞ
m(η̂N , θkN )ut.

We will in the remainder of the proof need some prop-
erties regarding the filters Φm and Ξm that are easily

established using Lemma 3.1:

∥

∥Ξm(η̂N , θkN )
∥

∥ = O(m(N)) (D.2)
∥

∥Φm(η̂N , θkN )− Φm(η̂N , θ◦)
∥

∥ = O(m(N)) (D.3)

‖Φm(η̂N , θ◦)− Φm(η◦, θ◦)‖ = O(m(N)) (D.4)
∥

∥Ξm(η̂N , θkN )− Ξm(η̂N , θ◦)
∥

∥ = O(m2(N)) (D.5)

‖Φm(η◦, θ◦)‖ = O(1) (D.6)

For future reference, we will establish the limit
of

√
Nm2(N). The dominating term in m(N) is

n(N)
√

logN/N and terms with d(N) will be neglected.
For N large enough, we have

lim
N→∞

√
Nm2(N) = lim

N→∞

√
Nn(N)2

logN

N

= lim
N→∞

(

n(N)4+δ

N

)

2
4+δ logN

N
δ

4+δ

= 0,

where the first term goes to zero by Assumption 3.1.

Using Lemma C.1 and Lemma C.3 with (D.2) and (D.3),
it follows that difference between xN and

1√
N

N
∑

t=m+1

Φm(η̂N , θ◦)utΞ
m(η̂N , θkN )ut (D.7)

tend to zero as N → ∞ w.p.1, and therefore they have
the same asymptotic distribution and the same asymp-
totic covariance. We will analyze (D.7) instead. Simi-
larly, using Lemma C.1 and Lemma C.3 with (D.2) and
(D.4), it follows that difference between (D.7) and

1√
N

N
∑

t=m+1

Φm(η◦, θ◦)utΞ
m(η̂N , θkN )ut (D.8)

tend to zero as N → ∞ w.p.1, and we will analyze (D.8)
instead. Similarly, using Lemma C.1 and Lemma C.3
with (D.5) and (D.6), the difference between (D.8) and

1√
N

N
∑

t=m+1

Φm(η◦, θ◦)utΞ
m(η̂N , θ◦)ut (D.9)

tend to zero as N → ∞ w.p.1, and we will analyze (D.9)
instead.

We rewrite Ξm(η̂N , θ◦)ut as

Ξm(η̂N , θ◦)ut =
1

A◦(q)

[

−B◦(q)utΓn

A◦(q)utΓn

]⊤

(η̂N − η̄n)

=
1

A◦(q)
ϕn
t (η◦, θ

◦)⊤(η̂N − η̄n). (D.10)
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Thus, we have shown that xN has the same distribution
and covariance as

TN := Zn
√
N(η̂N − η̄n), (D.11)

where

Zn =
N
∑

t=m+1

ϕm
t (η◦, θ◦)

F ◦(q)

A◦(q)
ϕn
t (η◦, θ◦)

⊤, (D.12)

and we will analyze TN instead.

D.2 Asymptotic covariance of TN

Using Lemma C.2, we have that

TN ∼ AsN(0, Q),

where

Q = σ2
◦ lim
n→∞

Zn[R̄n]−1(Zn)⊤, (D.13)

provided the right hand side limit exists. This will be
shown next. We start by analyzing R̄n.

R̄n = E
[

ϕn
t (ϕ

n
t )

⊤
]

= 〈Ψ, Ψ〉 , (D.14)

where

〈f, g〉 :=
∫ π

−π

f(ejω)g(ejω)∗ dω,

and with Ψ given by

Ψ =

[

−G◦Γn H◦Γn

Γn 0n×1

]

U◦

and U◦ is a spectral factor of the the covariance matrix
of the input ut and the noise et, given by

U◦ =

[

Fu 0

0 σ◦

]

.

For (D.12), we have that

Zn = E

[

ϕm
t (η◦, θ◦)

F ◦(q)

A◦(q)
ϕn
t (η◦, θ◦)

⊤

]

= E





[

−B◦

F◦ Γmut

A◦

F◦Γmut

][

−G◦Γnut

Γnut

]⊤




=

〈[

− G◦

F◦H◦ Γm 0n×1

1
F◦H◦Γm 0n×1

]

Fu,

[

−G◦Γn 0n×1

Γn 0n×1

]

Fu

〉

= 〈γ, Ψ〉 , (D.15)

with

γ =

[

− G◦

F◦H◦ Γm 0m×1

1
F◦H◦Γm 0m×1

]

Fu,

where the last equality is due to the fact that the added
column in the right argument of the inner product is mul-
tiplied by the zero column in γ when the inner product
is taken. Hence, we can write the asymptotic covariance
matrix of TN as

lim
N→∞

E
[

TNT⊤

N

]

= σ2
◦ 〈γ, Ψ〉 〈Ψ, Ψ〉−1 〈Ψ, γ〉

= σ2
◦ 〈PSΨ

[γ],PSΨ
[γ]〉 , (D.16)

where SΨ is the subspace in L1×2
2 spanned by the rows

of Ψ . Lemma C.4 gives that, as n → ∞, Sγ ⊆ SΨ and

lim
N→∞

E
[

TNT⊤

N

]

= σ2
◦ 〈γ, γ〉 = σ2

◦MCR.

D.3 Summing up

Consider TN defined in (D.11). As observed in Sec-
tion D.2, it follows from Lemma C.2 that

TN ∼ AsN(0, σ2
◦MCR). (D.17)

The asymptotic normality of
√
N(θ̂N − θ̂◦) follows

from (D.1) and (D.17), together with that
√
N(θ̂N − θ̂◦)

has the same asymptotic distribution as TN . From
(D.1) and (D.17), it now follows that

√
N(θ̂kN − θ◦) ∼ AsN(0, σ2

◦M
−1
CR). (D.18)
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