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Abstract

We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming
known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for
the relation between the known reference signals and the input to the target module, while the second block contains the
target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix
(kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving
a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Additionally,
we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte
Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate
the effectiveness of the proposed methods.
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1 Introduction

Networks of dynamical systems are everywhere, and
applications are in different branches of science, e.g.,
econometrics, systems biology, social science, and power
systems. Identification of these networks, usually re-
ferred to as dynamic networks, has been given increasing
attention in the system identification community, see
e.g., Materassi and Innocenti (2010), Van den Hof et al.
(2013), Hjalmarsson (2009).

In this paper, we use dynamic network to mean the in-
terconnection of modules, where each module is a linear
time-invariant (LTI) system. The interconnecting sig-
nals are the outputs of these modules. In a graph in-
terpretation, the interconnecting signals represent nodes
and the modules represent the edges of the graph. More-
over, we assume that exogenous measurable signals may
affect the dynamics of the network.

⋆ This work was supported by the Swedish Research Council
under contracts 2015-05285 and 2016-06079, and by the Eu-
ropean Research Council under the advanced grant LEARN,
contract 267381.

Email addresses: neveritt@kth.se (Niklas Everitt),
bottegal@kth.se (Giulio Bottegal), hjalmars@kth.se
(H̊akan Hjalmarsson).

Two main problems arise in dynamic network identifica-
tion. The first is unraveling the network topology (i.e.,
identify the edges of the graph), which can be seen as
a model structure selection problem. The second prob-
lems is the identification of one or more specific modules
in the network.

Some recent papers deal with both the aforementioned
problems (Materassi and Salapaka; 2012; Chiuso and Pillonetto;
2012; Materassi and Innocenti; 2010; Hayden et al.;
2014), whereas others are mainly focused on the
identification of a single module in the network
(Dankers et al.; 2013; Gunes et al.; 2014; Dankers et al.;
2015; Haber and Verhaegen; 2014; Torres et al.; 2014).
In particular,Dankers et al. (2013), andVan den Hof et al.
(2013) study the problem of understanding which of
the available output measurements should be used to
obtain a consistent estimate of a target module. In
Dankers et al. (2015) instead, errors-in-variables dy-
namic networks are considered, and methods that lead
to consistent module estimates are proposed. As ob-
served in Van den Hof et al. (2013), dynamic networks
with known topology can be seen as a generalization
of simple compositions, such as systems in cascade,
series or feedback connection. Therefore, identification
techniques for dynamic networks may be derived by
extending methods already developed for simple struc-
tures. This is the idea underlying the method presented
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in Van den Hof et al. (2013), which generalizes the two-
stage method, originally developed for closed-loop sys-
tems, to dynamic networks (Forssell and Ljung; 1999).
Instrumental variable methods for closed-loop systems
(Gilson and Van den Hof; 2005) are adapted to net-
works in Dankers et al. (2015). Similarly, the methodol-
ogy proposed in Wahlberg et al. (2009) for the identifi-
cation of cascaded systems is generalized to the context
of dynamic networks in Gunes et al. (2014). In that
work, the underlying idea is that a dynamic network
can be transformed into an acyclic structure, where any
reference signal of the network is the input to a cascaded
system consisting of two LTI blocks. In this alternative
system description, the first block captures the relation
between the reference and the noisy input of the target
module, the second block contains the target module.
The two LTI blocks are identified simultaneously using
the prediction error method (PEM) (Ljung; 1998). In
this setup, determining the model structure of the first
block of the cascaded structure may be complicated,
due to the possibly large number of interconnections in
the dynamic network. Furthermore, it requires knowl-
edge of the model structure of essentially all modules
in the feedback loop. Therefore, in Gunes et al. (2014),
the first block is modeled by an unstructured finite im-
pulse response (FIR) model of high order. The major
drawback of this approach is that, as is usually the case
with estimated models of high order, the variance of the
estimated FIR model is high. The uncertainty in the
estimate of the FIR model of the first block will in turn
decrease the accuracy of the estimated target module.

The objective of this paper is to propose a method
for the identification of a module in dynamic networks
that circumvents the high variance that is due to the
high order model of the first block. The main contri-
butions of this paper are two-fold. First, we discuss
the case where only the sensors directly measuring the
input and the output of the target module are used
in the identification process. Following a recent trend
in system identification, we use regularization to con-
trol the variance (Chen et al.; 2012). In particular, by
exploiting the equivalence between regularization and
Gaussian process regression (Pillonetto et al.; 2014),
we model the impulse response of the first block as a
zero-mean stochastic process. The covariance matrix
is given by the recently introduced first-order stable
spline kernel (Pillonetto and De Nicolao; 2010), whose
structure is parametrized by two hyperparameters. An
estimate of the target module is then obtained by em-
pirical Bayes (EB) arguments, that is, by maximization
of the marginal likelihood of the available measure-
ments (Pillonetto et al.; 2014). This likelihood depends
not only on the parameter of the target module, but
also on the kernel hyperparameters and the variance
of the measurement noise. Therefore, it is required
to estimate all these quantities. This is done by de-
signing a novel iterative solution scheme based on an
EM-type algorithm (Dempster et al.; 1977), known

as the Expectation/Conditional-Maximization (ECM)
algorithm (Meng and Rubin; 1993), which alternates
the so called expectation step (E-step) with a series
of conditional-maximization steps (CM-steps). When
only the module input and output sensors are used, the
E-step admits an analytical expression, because joint
likelihood of the module output and the sensitivity func-
tion is Gaussian. As for the CM-steps, one has to solve
relatively simple optimization problems, which either
admit a closed form solution, or can be efficiently solved
using gradient descent strategies. Therefore, the overall
optimization scheme for solving the marginal likelihood
problem turns out computationally efficient.

The second main contribution of the paper deals with
the case where more sensors spread in the network
are used in the identification of the target module.
Adding information through addition of measurements
used in the identification process has the potential to
further reduce the variance of the estimated module
(Everitt et al.; 2017). The downside is that an additional
measurement comes with another module to estimate,
also increasing the number of parameters to estimate.
To keep the number of additional parameters to esti-
mate low, we propose a method that exploits regulariza-
tion, modeling as a Gaussian process also the impulse
response of the path linking the target module to any
additional sensor. In this case, however, the measured
outputs and the unknown paths do not admit a joint
Gaussian description. As a consequence, the E-step of
the ECM method does not admit an analytical expres-
sion, as opposed to the one-sensor case described above.
To overcome this issue, we use Markov Chain Monte
Carlo (MCMC) techniques (Gilks et al.; 1995) to solve
the integral associated with the E-step. In particular, we
design an integration scheme based on the Gibbs sam-
pler (Geman and Geman; 1984) that, in combination
with the ECM method, builds up a novel identification
method for the target module reminiscent of the so
called empirical Bayes Gibbs sampling (Casella; 2001).

The effectiveness of the proposed methods is demon-
strated through numerical experiments. The methods
proposed in this paper are close in spirit to some
recently proposed kernel-based techniques for blind
system identification (Bottegal et al.; 2015) and Ham-
merstein system identification (Risuleo et al.; 2015).
A part of this paper has previously been presented in
Everitt, Bottegal, Rojas and Hjalmarsson (2016). More
specifically, the case where only the sensors directly
measuring the input and the output of the target mod-
ule are used in the identification process where partly
covered in Everitt, Bottegal, Rojas and Hjalmarsson
(2016), whereas, the method where more sensors spread
in the network are used in the identification of the target
module is completely novel.

The paper is organized as follows. In the next section,
we introduce the dynamic network model and we give
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the problem statement. In Section 3 we present the iden-
tification strategy. In Section 4, we describe the solu-
tion scheme based on the ECM algorithm. Additional
measurements are added in Section 5, and we present
the MCMC based scheme to estimate the target mod-
ule. Section 6 reports the results of Monte Carlo exper-
iments. Some conclusions end the paper.

1.1 Notation

Given a sequence of scalars {a(t)}mt=1, we denote by a
its vector representation a = [a(1) · · · a(m)]T ∈ ℜm.
Given a vector a ∈ ℜm, we define by Tn(a) the m ×
n lower triangular Toeplitz matrix whose elements are
the entries of a. Lower case letters indicate, in general,
column vectors and, when there is no confusion, capital
letters indicate their Toeplitz form, so given a ∈ ℜm, we
have that A = Tn(a), where the number n of columns is
consistent with the rest of the formula. The symbol “⊗”
denotes the standardKronecker product of twomatrices.

2 Problem Statement

2.1 Dynamic networks

We consider dynamic networks that consist of L scalar
internal variables wj(t), j = 1, . . . , L and L scalar ex-
ternal reference signals rl(t), l = 1, . . . , L, that can
be manipulated by the user. Some of the reference
signal may not be present, i.e., they may be identi-
cally zero. Define R as the set of indices of reference
signals that are present. In the dynamic network, the
internal variables are considered nodes and transfer
functions are the edges. Introducing the vector notation
w(t) := [w1(t) . . . wL(t)]

T , r(t) := [r1(t) . . . rL(t)]
T ,

the dynamics of the network are defined by the equation

w(t) = G(q)w(t) + r(t) , (1)

where

G(q) =

















0 G12(q) · · · G1L(q)

G21(q) 0
. . .

...
...

. . .
. . . G(L−1)L(q)

GL1(q) · · · GL(L−1)(q) 0

















,

where Gji(q) is a proper rational transfer function for
j = 1, . . . , L, i = 1, . . . , L. The internal variables w(t)
are measured with additive white noise, that is

w̃(t) = w(t) + e(t) ,

where e(t) ∈ R
L is a stationary zero-mean Gaussian

white-noise process with diagonal noise covariance ma-
trix Σe = diag

{

σ2
1 , . . . , σ

2
L

}

. We assume that the σ2
i

are unknown. To ensure stability and causality of the
network the following assumptions hold for all networks
considered in this paper.

Assumption 2.1 The network is well posed in the sense
that all principal minors of limq→∞(I − G(q)) are non-
zero (Van den Hof et al.; 2013).

Assumption 2.2 The sensitivity path S(q)

S(q) := (I − G(q))−1

is stable.

Assumption 2.3 The reference variables {rl(t)} are
mutually uncorrelated and uncorrelated with the mea-
surement noise e(t).

Thus, we can write

w̃(t) = S(q)r(t) + e(t) . (2)

We define a Nj as the set of indices of internal variables
that have a direct causal connection to wj , i.e., i ∈ Nj

if and only if Gji(q) 6= 0. Without loss of generality, we
assume that Nj = 1, 2, . . . , p, where p is the number of
direct causal connections to wj (we may always rename
the nodes so that this holds). The goal is to identify
module Gj1(q) given N measurements of the reference
r(t), the “output” w̃j(t) and the set of p neighbor signals
in Nj . To this end, we express w̃j , the measured output
of module Gj1(q) as

w̃j(t) =
∑

i∈Nj

Gji(q)wi(t) + rj(t) + ej(t) . (3)

The above equation depends on the internal variables
wi(t), i ∈ Nj , which we we only have noisy measurement
of; these can be expressed as

w̃i(t) = wi(t) + ei(t) =
∑

l∈R

Sil(q)rl(t) + ei(t) . (4)

where Sil(q) is the transfer function path from reference
rl(t) to output w̃i(t). Together, (3) and (4) allow us to
express the relevant part of the network, possibly con-
taining feedback loops, as a direct acyclic graph with
two blocks connected in cascade. Note that, in general,
the first block depends on all other blocks in the net-
work. Therefore, accurate low order parametrization of
this block depends on global knowledge of the network.

Example 2.1 As an example consider the network de-
picted in Figure 1, where, using (3) and (4), the acyclic
graph of Figure 2 can describe the relevant dynamics,
when wj = w3 is the output and we wish to identify
G31(q).
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G31
r4 r2

+
w4

G14 +
w1

G21 +
w2

G32 +
w3

G12 G23

G43

Fig. 1. Network example of 4 internal variables and 2 refer-
ence signals.

S12(q) S14(q)

S22(q) S24(q)

G31(q)

G32(q)

+ w3

r2

r4

+
w1

+
w2

Fig. 2. Direct acyclic graph of part of the network in Figure 1.

In the following, we briefly review two standard meth-
ods for closed-loop identification that we will use as a
starting point to derive the methodology described in
the paper.

2.2 A two stage method

The first stage of the two-stagemethod (Van den Hof et al.;
2013), proceeds by finding a consistent estimate ŵi(t)
of all nodes wi(t) in Nj . This is done by high-order
modeling of {Sil} and estimating it from (4) using
the prediction error method. The prediction errors are
constructed as

εi(t, α) = w̃i(t)−
∑

l∈R

Sil(q, α)rl(t) , (5)

where α is a parameter vector. The resulting estimate
Sil(q, α̂) is then used to obtain the node estimate as

ŵi(t) =
∑

l∈R

Sil(q, α̂)rl(t) . (6)

In a second stage, the module of interest Gj1(q) (and
the other modules inNj) is parameterized by θ and esti-
mated from (3), again using the prediction errormethod.
The prediction errors are now constructed as

εj(t, θ) = w̃j(t)− rj(t)−
∑

i∈Nj

Gji(q, θ)ŵi(t) . (7)

2.3 Simultaneous minimization of prediction errors

It is useful to briefly introduce the simultaneous
minimization of prediction error method (SMPE)

r1
S11(q) +

w1
G21(q) +

w2

Fig. 3. Basic network of 1 reference signal and 2 internal
variables.

(Gunes et al.; 2014). The main idea underlying SMPE
is that if, the two prediction errors (5) and (7) are si-
multaneously minimized, the variance will be decreased
(Wahlberg et al.; 2009). In the SMPE method, the pre-
diction error of the measurement w̃j depends explicitly
on α and is given by

εj(t, θ, α) = w̃j(t)−
∑

i∈Nj

Gji(q, θ)
∑

l∈R

Sil(q, α)rl(t) . (8)

The method proceeds to minimize

VN (θ, α) =
1

N

N
∑

t=1





ε2j(t, θ, α)

σ2
j

+
∑

i∈Nj

ε2i (t, α)

σ2
i



 . (9)

In (Gunes et al.; 2014), the noise variances are assumed
known, and how to estimate the noise variances is not
analyzed. As an initial estimate of the parameters θ and
α, the minimizers of the two-stage method can be taken.

The main drawback is that the least-squares estimation
of S may still induce high variance in the estimates.
Additionally, if each of the ns estimated transfer func-
tions in S is estimated by the first n impulse response
coefficients, the number of estimated parameters in S
alone is ns · n. Already for relatively small dimensions
of S the SMPE method is prohibitively expensive. To
handle this, a frequency domain approach is taken in
Dankers and Van den Hof (2015). In this paper, we will
instead use regularization to reduce the variance and the
complexity.

3 Empirical Bayes estimation of the module

In this section we derive our approach to the identifica-
tion of a specific module based on EB. For ease of expo-
sition, we give a detailed derivation in the one-reference-
one-module case. The extension to general dynamic net-
works follows along similar arguments.

We consider a dynamic network with one non-zero ref-
erence signal r1(t). Without loss of generality, we as-
sume that the module of interest is G21(q), and hence
G22(q), . . . , G2L(q) are assumed zero (We can always re-
name the signals such that this holds). The setting we
consider has been illustrated in Figure 3.We parametrize
the target module by means of a parameter vector θ ∈
R

nθ . Using the vector notation introduced in the previ-
ous section, we denote by w̃1 the stacked measurements
w̃1(t) before the module of interest G21(q, θ), and by w̃2
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the stacked output of this module w̃2(t). We define the
impulse response coefficients of G21(q, θ) by the inverse
discrete-time Fourier transform

gθ(t) :=
1

2π

∫ π

−π

G21(e
jω , θ)ejωt dω . (10)

Similarly we define s11 as the impulse response coeffi-
cients of S11(q), where S11(q) is, as before, the sensi-
tivity path from r1(t) to w1(t), and e1(t) and e2(t) are
the measurement noise sources (which we have assumed
white and Gaussian). Their variance is denoted by σ2

1
and σ2

2 , respectively. We rewrite the dynamics as

w̃1 = S11r1 + e1 ,

w̃2 = GθS11r1 + e2 ,
(11)

whereGθ is theN×N lower triangular Toeplitzmatrix of
the N first impulse response samples gθ. The same nota-
tion holds for the impulse response s11 and its Toeplitz-
matrix version S11 = TN (s11). We further rewrite (11)
as

w̃1 = R1s11 + e1 ,

w̃2 = GθR1s11 + e2 .
(12)

where R1 = TN (r1). For computational purposes, we
only consider the first n samples of s11, where n is large
enough such that the truncation captures the dynamics
of the sensitivity S11(q) well enough. Let z := [w̃T

1 w̃T
2 ]

T ;
we rewrite (12) as

z = Wθs11 + e , Wθ =

[

R1

GθR1

]

e =

[

e1

e2

]

(13)

Note that e is a random vector such that

Σe := E
[

eeT
]

=

[

σ2
1I 0

0 σ2
2I

]

. (14)

3.1 Bayesian model of the sensitivity path

To reduce the variance in the sensitivity estimate (and
also reduce the number of estimated parameters), we
cast our problem in a Bayesian framework andmodel the
sensitivity function as a zero-mean Gaussian stochastic
vector (Rasmussen and Williams; 2006), i.e.,

p(s11;λ,Kβ) ∼ N (0, λKβ) . (15)

The structure of the covariance matrix is given by the
first-order stable spline kernel (Pillonetto and De Nicolao;
2010):

{Kβ}i,j = βmax(i,j), β ∈ [0, 1) . (16)

The parameter β regulates the decay velocity of the re-
alizations from (15), whereas, λ tunes their amplitude.
In this context, Kβ is usually called a kernel (due to
the connection between Gaussian process regression and
the theory of reproducing kernel Hilbert space, see e.g.
Rasmussen and Williams (2006) for details) and deter-
mines the properties of the realizations of s. In particu-
lar, the stable spline kernel enforces smooth and BIBO
stable realizations (Pillonetto and De Nicolao; 2010).

3.2 The marginal likelihood estimator

Since s11 is assumed stochastic, it admits a probabilis-
tic description jointly with the vector of observations z,
parametrized by the vector

η =
[

σ2
1 σ2

2 λ β θ
]

. (17)

In particular, having assumed a Gaussian distribution of
the noise, the joint description is also Gaussian, that is,

p

([

z

s11

]

; η

)

∼ N

([

0

0

]

,

[

Σz Σzs

Σsz λKβ

])

, (18)

where Σz = WθλKβW
T
θ + Σe, and Σzs = ΣT

sz =
WθλKβ. It is instrumental to derive the posterior dis-
tribution of s11 given the measurement vector z. It is
given by (Anderson and Moore; 1979)

p(s11|z; η) ∼ N (PWT
θ Σ−1

e z, P ) , (19)

P = (WT
θ Σ−1

e Wθ + (λKβ)
−1)−1 , (20)

and it is also parametrized by the vector η.

The module identification strategy we propose in this
paper relies on an empirical Bayes approach. We intro-
duce the marginal probability density function (pdf) of
the measurements

p(z; η) =

∫

p(z, s11) ds11 ∼ N (0, Σz) , (21)

that is, the pdf of the measurements after having inte-
grating out the dependence on the sensitivity path s11.
Then, we can define the (log) marginal likelihood (ML)
criterion as the maximum of the marginal pdf defined
above

η̂ = argmax
η

p(z; η) (22)

= argmin
η

(

log detΣz + zTΣ−1
z z

)

,

whose solution provides also an estimate of θ and thus
of the module of interest.
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4 Computation of the solution of the marginal
likelihood criterion

Problem (22) is nonlinear and may involve a large num-
ber of decision variables, if nθ is large. In this section,
we derive an iterative solution scheme based on the
Expectation/Conditional-Maximization (ECM) algo-
rithm (Meng and Rubin; 1993), which is a generaliza-
tion of the standard Expectation-Maximization (EM)
algorithm. In order to employ EM-type algorithms, one
has to define a latent variable; in our problem, a natural
choice is s11. Then, a (local) solution to (22) is achieved
by iterating over the following steps:

(E-step) Given an estimate η̂(k) (computed at the k-th
iteration of the algorithm), compute

Q(k)(η) := E [log p(z, s11; η)] , (23)

where the expectation is taken with respect to the
posterior of s11 when the estimate η(k) is used, i.e.,
p(s11|z, η̂(k)) ;

(M-step) Solve the problem

η̂(k+1) = argmax
η

Q(k)(η) . (24)

First, we turn our attention on the computation of the E-

step, i.e., the derivation of (23). Let ŝ
(k)
11 and P̂ (k) be the

posterior mean and covariance matrix of s11, computed

from (19) using η̂(k). Define Ŝ
(k)
11 := P̂ (k) + ŝ

(k)
11 ŝ

(k)T
11 .

The following proposition provides an expression for the
function Q(k)(η).

Lemma 4.1 Let η̂(k) = [σ̂
2(k)
1 σ̂

2(k)
2 λ̂(k) β̂(k) θ̂(k)] be an

estimate of η after the k-th iteration of the EM method.
Then

Q(k)(η) = −
1

2
Q

(k)
0 (σ2

1 , σ
2
2 , θ) −

1

2
Q(k)

s (λ, β) , (25)

where

Q
(k)
0 (σ2

1 , σ
2
2 , θ) =

(

log detΣe + zTΣ−1
e z − 2zTWθ ŝ

(k)
11

+Tr
{

WT
θ Σ−1

e WθŜ
(k)
11

})

, (26)

Q(k)
s (λ, β) = log detλKβ + Tr

{

(λKβ)
−1

Ŝ
(k)
11

}

.

(27)

Having computed the function Q(k)(η), we now focus on
its maximization. We first note that the decomposition
(25) shows that the kernel hyperparameters can be up-
dated independently of the rest of the parameters:

Proposition 4.1 Define

Qβ(β) = log detKβ + n logTr
{

K−1
β Ŝ

(k)
11

}

. (28)

Then

β̂(k+1) = argmin
β∈[0,1)

Qβ(β) , (29)

λ̂(k+1) =
1

n
Tr
{

K−1

β̂(k+1)
Ŝ
(k)
11

}

. (30)

Therefore, the update of the scaling hyperparameter is
available in closed-form, while the update of β requires
the solution of a scalar optimization problem in the do-
main [0, 1], an operation that requires little computa-
tional effort, see Bottegal et al. (2016) for details.

We are left with the maximization of the function
Q

(k)
0 (σ2

1 , σ
2
2 , θ). In order to simplify this step, we split

the optimization problem into constrained subproblems
that involve fewer decision variables. This operation
is justified by the ECM paradigm, which, under mild
conditions (Meng and Rubin; 1993), guarantees the
same convergence properties of the EM algorithm even
when the optimization of Q(k)(η) is split into a series of
constrained subproblems. In our case, we decouple the
update of the noise variances from the update of θ. By
means of the ECM paradigm, we split the maximiza-

tion of Q
(k)
0 (σ2

1 , σ
2
2 , θ) in a sequence of two constrained

optimization subproblems:

θ̂(k+1) = argmax
θ

Q
(k)
0 (σ2

1 , σ
2
2 , θ) (31)

s.t. σ2
1 = σ̂

2(k)
1 , σ2

2 = σ̂
2(k)
2 ,

σ̂
2(k+1)
1 , σ̂

2(k+1)
2 = argmax

σ2
1 , σ

2
2

Q
(k)
0 (σ2

1 , σ
2
1 , θ) (32)

s.t. θ = θ̂(k+1) .

The following result provides the solution of the above
problems.

Proposition 4.2 Introduce the matrix D ∈ R
N2×N

such that Da = vec(TN (a)), for any a ∈ R
N . Define

Â(k) = DT (R1Ŝ
(k)
11 RT

1 ⊗ IN )D (33)

b̂(k) = TN (R1ŝ
(k)
11 )

T w̃2 . (34)

Then

θ̂(k+1) = argmin
θ

gTθ Â
(k)gθ − 2b̂(k)T gθ . (35)

The closed form updates of the noise variances are as

6



follows

σ̂
2(k+1)
1 =

1

N

(

‖w̃1 −R1ŝ
(k)
11 ‖

2
2 + Tr

{

R1P̂
(k)RT

1

})

,

σ̂
2(k+1)
2 =

1

N

(

‖w̃2 −G
θ̂(k+1)R1ŝ

(k)
11 ‖

2
2

+Tr
{

G
θ̂(k+1)R1P̂

(k)RT
1 G

T

θ̂(k+1)

})

. (36)

Each variance is the result of the sum of one term that
measures the adherence of the identified systems to the
data and one term that compensates for the bias in the
estimates introduced by the Bayesian approach. The up-
date of the parameter θ involves a (generally) nonlinear
least-squares problem, which can be solved using gradi-
ent descent strategies. Note that, in case the impulse re-
sponse gθ is linearly parametrized (e.g., it is an FIR sys-
tem or orthonormal basis functions are used (Wahlberg;
1991)), then the update of θ is also available in closed-
form.

Example 4.1 Assume that the linear parametrization
gθ = Lθ, L ∈ R

N×nθ , is used, then

θ̂(k+1) =
(

LT Â(k)L
)−1

LT b̂(k) . (37)

4.1 Identification algorithm

The proposed method for module identification can be
summarized in the following steps.

(1) Find an initial estimate of η̂(0), set k = 0.

(2) Compute ŝ
(k)
11 and P̂ (k) from (19).

(3) Update the kernel hyperparameters using (30),
(29).

(4) Update the vector θ solving (35).
(5) Update the noise variances from (36).
(6) Check if the algorithm has converged. If not, set

k = k + 1 and go back to step 2.

The method can be initialized in several ways. One op-

tion is to first estimate Ŝ11(q) by an empirical Bayes
method using only r1 and w̃1. Then, ŵ1 is constructed
from (6), using the obtained Ŝ11(q). Finally, G is esti-
mated using the prediction error method, using ŵ1 as
input and w̃2 as output.

4.2 Extension to general structures

In this section, we generalize the previous algorithm
to a general network structure with m ≤ L refer-
ence signals {rl1(t), . . . , rlm(t)}, and p ≤ L modules
{Gj1(q), . . . , Gjp(q)} sharing the same output w̃j(t) as

the module of interest, and modeled in time domain as
gθ1, . . . , gθp . For any i = 1, . . . , p, we can write

w̃i = Rl1sil1 + . . .+Rlmsilm + eki
= Rsi + eki

, (38)

where R := [Rl1 . . . Rlm ] and si = [sTil1 . . . sTilm ]T . Us-
ing these definitions we can also write (cf. (3))

w̃j = rj +Gθ1Rs1 + . . .+GθpRsp + ej . (39)

Defining also w = [w̃T
1 . . . w̃T

p ]
T , s = [sT1 . . . sTp ]

T , Gθ =

[Gθ1 . . . Gθp ], ew = [eT1 . . . eTp ]
T , we obtain the following

expression for the network dynamics

w = (Ip ⊗R)s+ ew

w̃j − rj = Gθ(Ip ⊗R)s+ ej , (40)

or, with z = [wT (w̃j − rj)
T ]T

z = Wθs+ e, Wθ =

[

(Ip ⊗R)

Gθ(Ip ⊗R)

]

, e =

[

ew

ej

]

. (41)

Each sensitivity path sil is given a prior of the form
(15), with hyperparametersλil and βil, assumingmutual
independence between the sensitivity paths. Although
it may appear more sensible to incorporate some cor-
relation among the sensitivity paths, at present, it is
not clear how this can be done using Gaussian priors.
Some recent work suggests to enrich the stable spline
kernel with a component enforcing low McMillan degree
(Prando et al.; 2014). Furthermore, as we will see, as-
suming independent priors allows the kernel hyperpa-
rameters to be updated independently. Introducing Λ
as the diagonal matrix with elements corresponding to
{λil}, and similarly, definingKβ with diagonal elements
{Kβil

}, we have

p(s; Λ, Kβ) ∼ N (0, (Λ⊗ In)Kβ) . (42)

We collect all the parameters characterizing the model
into the vector η. It follows that

p(z; η) ∼ N (0, Σz) , (43)

where Σz = Wθ(Λ ⊗ In)KβW
T
θ +Σe, and

Σe = diag
{

σ2
1 , . . . , σ

2
p, σ

2
j

}

⊗ IN . (44)

Therefore, we can define the following ML criterion

η̂ = argmax
η

log p(z; η) . (45)

Having set the notation, we outline the ECM algorithm
for this general setting below. To this end, note that

p(s|z; η) = N (ŝ, P) , (46)
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where

ŝ = PWT
θ Σ

−1
e

z , (47)

P =
(

WT
θ Σ

−1
e

Wθ + ((Λ⊗ In)Kβ)
−1
)−1

. (48)

We use again the notation ŝ(k), P̂(k), Ŝ(k) to mean the
estimates of the corresponding quantities at iteration k.

Proposition 4.3 Let η collect all the parameters char-
acterizing (45), and let η(k) be its estimate after the k-th
iteration of the ECM method. Then the estimate η(k+1)

is obtained by means of the following updates.

Hyperparameters: Define

Qβij
(β) = log detKβ+n logTr

{

K−1
β Ŝ

(k)
ij

}

, (49)

where Ŝ
(k)
ij is the n×n diagonal block of Ŝ(k)corresponding

to the path sij. Then λij and βij are updated as in
Proposition 4.1, for any i, j.

Module parameters: Define

Â(k) := (Ip ⊗D)T
(

R̄Ŝ(k)R̄T ⊗ IN

)

(Ip ⊗D) , (50)

b̂(k)T := (w̃j − rj)
T
[

TN (Rŝ
(k)
1 ) . . . TN (Rŝ(k)p )

]

,(51)

where D is as in Proposition 4.2 and R̄ = Ip ⊗R.
Then

θ̂(k+1) = argmin
θ

gT
θ Â

(k)gθ − 2b̂(k)Tgθ , (52)

where gθ := [gTθ1 . . . gTθp ]
T .

Noise variances:

σ̂
2(k+1)
i =

1

N

(

‖w̃i −Rŝ
(k)
i ‖22 + Tr

{

RP̂
(k)
i RT

})

σ̂
2(k+1)
j =

1

N

(

‖w̃j − rj −G
θ̂(k+1)(I ⊗R)ŝ(k)‖22

+Tr
{

G
θ̂(k+1)R̄P̂(k)R̄TGT

θ̂(k+1)

})

, (53)

where P
(k)
i is the nm× nm diagonal block of P(k),

corresponding to the covariance matrix of ŝ
(k)
i .

5 Including additional sensors

By using the kernel-based approach adopted above, the
sensitivity paths could be modeled with only a few hy-
perparameters while still keeping the module of interest
parametric. One potential benefit with this approach is
that including another reference signal will not increase
the number of estimated parameters significantly. Al-
though the complexity of the problem increases slightly,

r1
S11(q) +

w1
G21(q) +

w2
F (q) +

w3

Fig. 4. Basic network of 1 reference signal and 3 internal
variables.

only a few extra hyperparameters need to be estimated
and the dimensions of (35) remain the same in the up-
date of θ.

As reference signals can be added with little effort, a
natural question is if also output measurements “down-
stream” of the module of interest can be added with lit-
tle effort. In Example 2.1 the measurement w4 is such
a measurement that, with the same strategy as before,
can be expressed as

w4(t) = G43(q)w3(t) + r4(t) . (54)

Using this measurement for the purpose of identification
would require the identification of G43(q) in addition
to the previously considered modules. The signal w4(t)
contains information about w3(t), and thus information
about the module of interest. The price we have to pay
for this information is the additional parameters to es-
timate and, as we will see, another layer of complexity.

To extend the previous framework to include additional
measurements after the module of interest, let us con-
sider the case where we would like to include only one ad-
ditional measurement, in this context denoted by w̃3(t);
the generalization to more sensors is straightforward but
notationally heavy. Let the path linking the target mod-
ule to the additional sensor be denoted by F (q), with
impulse response f . Furthermore, let us for simplicity
consider the one-reference-signal-one-input case again,
i.e., (11), (12). The setting we consider has been illus-
trated in Figure 4. We model also this module using a
Bayesian framework by interpreting f as a zero-mean
Gaussian stochastic vector, i.e.,

p(f ;λf ,Kβf
) ∼ N (0, λfKβf

) , (55)

where again Kβf
is the first-order stable spline kernel

(16). We introduce the following variables

σ =
[

σ2
1 σ2

2 σ2
3

]

, (56)

z =
[

w̃T
1 w̃T

2 w̃T
3

]T

, (57)

zf = w̃3 . (58)

8



For given vales of θ, s and f , we construct

Ws =









R

GθR

FGθR









, (59)

Wf = TN (GθRs11) , (60)

Σ = diag {σ} ⊗ IN . (61)

Notice that the last internal variablew3 can be expressed
as

w3 = FGθS11r

= GθFS11r

= GθFRs11
= GθRFs11
= GθRv, (62)

where commutation of the matrices follows from the fact
that they are lower-triangular Toeplitz matrices, and
v := Fs11. For ease of exposition, we will also use the
notation v = f ∗ s11.

The key difficulty in this setup is that the description
of the measurements and the system description with
both s11 and f no longer admit a jointly Gaussian prob-
abilistic model, because v in (62) is the result of the con-
volution of two Gaussian vectors. In fact, a closed-form
expression is not available. This fact has a detrimen-
tal effect in our empirical Bayes approach, because the
marginal likelihood estimator of

η =
[

σ λs βs λf βf θ
]

,

where λs, βs are the hyperparameters of the prior of s11,
that is

η̂ = argmax
η

p(z; η) (63)

= argmax
η

∫

p(z, s11, f ; η) ds11 df, (64)

does not admit an analytical expression, since the inte-
gral (64) is intractable. To treat this problem, again we
resort to EM-type methods. In this case, the latent vari-
ables to add to the problem are both s11 and f , so that
the EM method has to alternate between the following
steps.

(E-step) Given an estimate η̂(k) (computed at the k-th
iteration of the algorithm), compute

Q(k)(η) := E [log p(z, s11, f ; η)] , (65)

where the expectation is taken with respect to the
target distribution when the estimate η(k) is used,
i.e., p(s11, f |z, η̂(k)) ;

(M-step) Solve the problem

η̂(k+1) = argmax
η

Q(k)(η) . (66)

While the M-Step remains substantially unchanged, the
E-step requiresmore attention. Now, it requires the com-
putation of the integral

E [log p(z, s11, f ; η)] = (67)
∫

log p(z, s11, f ; η)p(s11, f |z, η̂
(k)) ds11 df,

which does not admit an analytical solution, because the
posterior distribution p(s11, f |z, η̂(k)) is non-Gaussian
(it does not have an analytical form, in fact). However,
using Markov Chain Monte Carlo (MCMC) techniques,
we can compute an approximation of the integral by
sampling from the joint posterior density (also called a
target distribution)

p(s11, f |z; η). (68)

As pointed out before, (68) does not admit a closed-
form expression and hence direct sampling is a hard
task. However, if it is easy to draw samples from the
conditional probability distributions, samples of (68)
can be easily drawn using the Gibbs sampler. In Gibbs
sampling, each conditional is considered the state of a
Markov chain; by iteratively drawing samples from the
conditionals, the Markov chain will converge to its sta-
tionary distribution, which corresponds to the target dis-
tribution. In our problem, the conditionals of (68) are
as follows

• p(s11|f, z; η). Using (59), we write the linear model

z = Wss11 + e, (69)

where e = [eT1 eT2 eT3 ]
T . Then, given f , the vectors

s11 and z are jointly Gaussian, so that

p(s|f, z; η) ∼ N (ms, Ps) , (70)

with

Ps =
(

WT
s Σ−1Ws + (λsKβs

)−1
)−1

ms = PsW
T
s Σ−1z .

• p(f |s, z; η). Given s and r, all sensors but the last
becomes redundant. Using (60) we write the linear
model

zf = Wff + e3, (71)

which shows that

p(f |s11, z; η) ∼ N (mf , Pf ), (72)
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with

Pf =

(

WT
f Wf

σ2
3

+ (λfKβf
)−1

)−1

mf = Pf

WT
f

σ2
3

zf .

The following algorithm summarizes the Gibbs sampler
used for dynamic network identification.

Algorithm 1 Gibbs sampler for a dynamic network.
Initialization: compute initial value of s0 and f0. For
k = 1 to M +M0:

(1) Draw the sample sk from p(s|fk−1, z; η);
(2) Draw the sample fk from p(f |sk, z; η);

In this algorithm, M0 is the number of initial samples
that are discarded, which is also known as the burn-in
(Meyn and Tweedie; 2009). These samples are discarded
since the Markov chain needs a certain number of sam-
ples to converge to its stationary distribution.

5.1 The ECM method with additional sensor

We now discuss the computation of the E-step and the
CM-steps using the Gibbs sampler scheme introduce
above.

Proposition 5.1 Introduce the mean and covariance
quantities

sMs =
1

M

M0+M
∑

k=M0+1

sk , (73)

fM
s =

1

M

M0+M
∑

k=M0+1

fk , (74)

vMs =
1

M

M0+M
∑

k=M0+1

vk , (75)

PM
s =

1

M

M0+M
∑

k=M0+1

(sk − sMs )(sk − sMs )T , (76)

PM
f =

1

M

M0+M
∑

k=M0+1

(fk − fM
s )(fk − fM

s )T , (77)

PM
v =

1

M

M0+M
∑

k=M0+1

(vk − vMs )(vk − vMs )T , (78)

where sk, fk and vk = sk ∗ fk are samples drawn using
Algorithm 1.

Define

Q̃s(λ, β, x,X) := log detλKβ

+Tr
{

(λKβ)
−1(xxT +X)

}

,

Q̃z(σ
2, z, x,X) := N log σ2 +

1

σ2
‖z −Rx‖22

+
1

σ2
Tr
{

RXRT
}

,

Q̃f(σ
2, z, θ, x,X) := N log σ2 +

1

σ2
‖z −GθRx‖22

+
1

σ2
Tr
{

GθRXRTGT
θ

}

.

Then

−2Q(k)(η) = lim
M→∞

Q̃s(λs, βs, s
M
s , PM

s ) ,

+Q̃s(λf , βf , f
M
s , PM

f ) ,

+Q̃z(σ
2
1 , w̃1, s

M
s , PM

s ) ,

+Q̃f(σ
2
2 , w̃2, θ, s

M
s , PM

s ) ,

+Q̃f(σ
2
3 , w̃3, θ, v

M
s , PM

v ) . (79)

The CM-steps are now very similar to the previous
method and follows by similar reasoning as in the proof
of Proposition 4.2.

Proposition 5.2 Let η̂(k) be the parameter estimate ob-
tained at the k:th iteration. Define SM

s = sMs (sMs )T +
PM
s , SM

v = vMs (vMs )T + PM
v ,

Âs = DT (RSM
s RT⊗ IN )D ,

Âv = DT (RSM
v RT⊗ IN )D ,

b̂s = TN (RsMs )T w̃2 ,

b̂v = TN (RvMs )T w̃3 .

Then the updated parameter vector η̂(k+1) is obtained as
follows

θ̂(k+1) = argmin
θ

gTθ

(

1

σ2
2

Âs +
1

σ2
3

Âv

)

gθ

−2

(

1

σ2
2

b̂Ts +
1

σ2
3

b̂Tv

)

gθ . (80)

The closed form updates of the noise variances are

σ̂
2(k+1)
1 =

1

N

(

‖w̃1 −RsMs ‖22 + Tr
{

RPM
s RT

})

,

σ̂
2(k+1)
2 =

1

N

(

‖w̃2 −G
θ̂(k+1)RsMs ‖22

+ Tr
{

G
θ̂(k+1)RPM

s RTGT

θ̂(k+1)

})

,

σ̂
2(k+1)
3 =

1

N

(

‖w̃3 −G
θ̂(k+1)RvMs ‖22

+ Tr
{

G
θ̂(k+1)RPM

v RTGT

θ̂(k+1)

})

. (81)
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The kernel hyperparameters are updated through (29) and
(30) for both s11 and f .

5.2 Identification algorithm

The proposed method for module identification can be
summarized in the following steps.

(1) Find an initial estimate of η̂(0), set k = 0.
(2) Compute the quantities (73)-(78) using Algorithm

1.
(3) Update the kernel hyperparameters using (30),

(29).
(4) Update the vector θ solving (80).
(5) Update the noise variances from (81).
(6) Check if the algorithm has converged. If not, set

k = k + 1 and go back to step 2.

As can be seen, the main difference with the one-input-
one-sensor algorithm (see Section 5.2) is that Step 2 of
the algorithm requires a heavier computational burden,
because of the integration via Gibbs sampling. Never-
theless, as will be seen in the next section, this pays off in
terms of performance in identifying the target module.

6 Numerical experiments

In this section, we present results from two Monte Carlo
simulations to illustrate the performance of the pro-
posed method, which we abbreviate as Network Empir-
ical Bayes (NEB) and its extension NEBX outlined in
Section 5, and we compare with SMPE (see Section 2.3).
We consider the network case of Example 2.1 and a sim-
ple closed loop network. The reference signals used are
zero-mean unit-varianceGaussianwhite noise. The noise
signals ek are zero-mean Gaussian white noise with vari-
ances such that noise to signal ratios Varwk/Var ek are
constant. The setting of the compared methods are pro-
vided in some more details below, where the model order
of the plant G(q) is known for both the SMPE method
and the proposed NEB method.

NEB: The method is initialized by the two-stage
method. First, Ŝ(q) is estimated by least-squares. Sec-
ond,G is estimated usingMORSM (Everitt, Galrinho and Hjalmarsson;
2016) from the simulated signal ŵ obtained from (6)
and w̃j . MORSM is an iterative method that is asymp-
totically efficient for open loop data. Then, the iterative
method outlined in Section 4.1 is employed with the
stopping criteria

∥

∥η̂(k+1) − η̂(k)
∥

∥ /
∥

∥η̂(k)
∥

∥ < 10−10.

NEBX: The method is initialized by NEB. f0 is obtained
by an empirical Bayesmethod using simulated input and
measured output of f . Then, the iterative method out-
lined in Section 5 is employed with the stopping criteria
∥

∥η̂(k+1) − η̂(k)
∥

∥ /
∥

∥η̂(k)
∥

∥ < 10−10, or a maximum of 50
iterations.

SMPE: The method is initialized by the two-stage
method, exactly as NEB. Then, the cost function (9),
with a slight modification, is minimized. The modifica-
tion of the cost function comes from that, as mentioned
before, the SMPE method assumes that the noise vari-
ances are known. To make the comparison fair, also
the noise variances need to be estimated. By maximum
likelihood arguments, the logarithm of the determinant
of the complete noise covariance matrix is added to the
cost function (9) and the noise variances are included in
θ, the vector of parameters to estimate. The tolerance

is set to
∥

∥

∥
θ̂(k+1) − θ̂(k)

∥

∥

∥
/
∥

∥

∥
θ̂(k)

∥

∥

∥
< 10−10.

The simulations were run in Julia, a high-level, high-
performance dynamic programming language for tech-
nical computing (Bezanson et al.; 2017).

6.1 Closed-loop identification

The first Monte Carlo simulation is from a system oper-
ating in closed loopwith an unknown low order controller
with N = 200 data samples. This setting is slightly dif-
ferent to the standard closed-loop setting in that the
measurement noise of w̃2 is not fed back in the loop, and
that the signals w1 and w2 are treated completely sym-
metric. The noise to signal ratio are all set to 1. The true
plant and true controller are chosen such that the sensi-
tivity function S(q−1) has an impulse response that can
be well approximated by n = 100 impulse response co-
efficients. The closed loop is depicted in Figure 5, where

r1

+
w1

G +
w2

C

Fig. 5. Closed loop network of first Monte Carlo simulation.

G(q, θ) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
, (82)

The controller C is given by

C(q, θ) =
0.8 + 0.4q−1 − 0.5q−2

1 + 0.5q−1 + 0.2q−2
, (83)

with the parameter vector θ = [b1, b2, a1, a2], and true
parameters θ0 = [0.4, 0.5, −0.4, 0.3].

The two methods are compared using the fit of the im-
pulse response coefficients of g according to

FIT = 1−

∥

∥g0 − ĝ
∥

∥

2

‖g0‖2
(84)
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For this example, the proposed NEB method achieves a
higher fit, on average, than the SMPE method, cf. the
box plot of Figure 6. Comparing the fits obtained at
each Monte Carlo run (see Figure 7), it can be seen that
NEB consistently performs at least as good as SMPE
for almost every Monte Carlo run and in some runs con-
siderably better. From the sample means and variance
reported in Table 1, it can be seen that, in general, the
estimates produced by NEB have smaller variance than
SMPE while their mean values are similar.

SMPE NEB
0.85

0.9

0.95

1

Fig. 6. Box plot of the fit of the impulse response of G
obtained by the SMPE, and NEB methods respectively.

0.85 0.9 0.95 1

0.95

1

FITSMPE

F
IT

N
E
B

NEB

Fig. 7. Each fit of the impulse response coefficients of G for
NEB compared with SMPE for 100 Monte Carlo simulations.
The black line represents y = x, i.e., when SMPE performs
equally good as NEB. Note the scaling of the x-axis of this
figure.

6.2 Dynamic network example

This Monte Carlo simulation compares the NEBmethod
and NEBX with the SMPE method on data from the
network of Example 2.1, illustrated in Figure 1, where
each of the modules are of second order, i.e.,

Gij(q) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
,

for a set of parameters that were chosen such that all
modules are stable and {S12(q), S24(q), S22(q), S24(q)}
are stable and can be well approximated with 70
impulse response coefficients. Two reference signals,
r2(t) and r4(t) are available and N = 200 data
samples are used with the goal to estimate G31(q)
and G32. In total 6 transfer functions are estimated,
{S12(q), S24(q), S22(q), S24(q), G31(q) and G32(q)},
where {S12(q), S24(q), S22(q), S24(q)} are each param-
eterized by n = 75 impulse response coefficients in all
methods. For NEBX also G43(q) is estimated by n = 75
impulse response coefficients. The noise to signal ratio
at each measurement is set to Var wk/Var ek = 0.1 and
the additional measurement used in NEBX has a lower
noise to signal ratio of Var w4/Var e4 = 0.01.

The fits of the impulse responses of G31 and G32 for the
experiment are shown as a boxplot in Figure 8 and Fig-
ure 10 respectively. Comparing the fits obtained at each
Monte Carlo run (see Figure 11 and Figure 11), the pro-
posed NEB and NEBX methods are competitive with
the SMPE method for this network. In many cases, the
SMPE method failed to produce a reasonable estimate
as 10 percent of the Monte Carlo runs gave a negative
fit and were removed before the impulse response fits,
boxplots and parameter sample means and variances
were computed. From the sample means and variance re-
ported in Table 2 and Table 3, it can be seen that, in gen-
eral, the estimates produced by NEB and NEBX have,
in general, significantly smaller variance than SMPE,
while the mean values are roughly the same. Recalling
that one of the motivations of the proposed methods was
to reduced the variance induced by the high order mod-
eling of the sensitivity paths, both the closed-loop ex-
ample and network example gives some support for this
motivation.

In almost all of the Monte Carlo runs, NEBX outper-
formed NEB in this simulation. However, NEBX is sig-
nificantly more computationally expensive than NEB.

SMPE NEB NEBX
0.8

0.85

0.9

0.95

1

Fig. 8. Box plot of the fit of the impulse response of G31 ob-
tained by the methods SMPE, NEB and NEBX respectively.
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Table 1
Sample mean and sample variance of the parameters estimates for Ĝ for compared methods.

b01 = 0.2 b02 = 0.3 a0

1 = 0.4 a0

2 = 0.5

Method Es b̂1 N · Vars b̂1 Es b̂2 N ·Vars b̂2 Es â1 N · Vars â1 Es â2 N · Vars â2

SMPE 0.21 0.43 0.31 0.93 0.50 3.4 0.16 2.8

NEB 0.20 0.22 0.31 0.26 0.68 2.9 0.23 2.0

Table 2
Sample mean and sample variance of the parameters estimates for Ĝ31 for the three compared methods.

b01 = 0.2 b02 = 0.3 a0

1 = 0.4 a0

2 = 0.5

Method Es b̂1 N · Vars b̂1 Es b̂2 N ·Vars b̂2 Es â1 N · Vars â1 Es â2 N · Vars â2

SMPE 0.20 0.088 0.28 0.075 0.36 1.6 0.53 0.85

NEB 0.21 0.049 0.29 0.070 0.36 0.94 0.52 0.62

NEBX 0.20 0.024 0.29 0.036 0.40 0.60 0.50 0.52

Table 3
Sample mean and sample variance of the parameters estimates for Ĝ32 for the three compared methods.

b01 = 0.4 b02 = 0.5 a0

1 = 0.5 a0

2 = 0.15

Method Es b̂1 N · Vars b̂1 Es b̂2 N ·Vars b̂2 Es â1 N · Vars â1 Es â2 N · Vars â2

SMPE 0.34 1.9 0.44 2.1 0.60 5.0 0.23 3.0

NEB 0.34 0.30 0.44 0.30 0.65 1.0 0.26 0.84

NEBX 0.36 0.11 0.45 0.16 0.63 0.68 0.25 0.55
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Fig. 9. Fit of impulse response coefficients of G31 for SMPE
compared with NEB and NEBX respectively for 100 Monte
Carlo simulations. The black line represents y = x, i.e., when
SMPE performs equally good as NEB and NEBX.

7 Conclusion

In this paper, we have addressed the identification of a
module in dynamic networks with known topology. The
problem is cast as the identification of a set of systems
in series connection. The second system corresponds to
the target module, while the first represents the dynamic
relation between exogenous signals and the input and
the target module. This system is modeled following a
Bayesian kernel-based approach, which enables the iden-
tification of the target module using empirical Bayes ar-

SMPE NEB NEBX
0.2

0.4

0.6

0.8

1

Fig. 10. Box plot of the fit of the impulse response of G32 ob-
tained by the methods SMPE, NEB and NEBX respectively.

guments. In particular, the target module is estimated
using a marginal likelihood criterion, whose solution is
obtained by a novel iterative scheme designed through
the ECM algorithm. The method is extended to incor-
porate measurements downstream of the target module,
which numerical experiments suggest increases perfor-
mance.
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Fig. 11. Fit of impulse response coefficients of G32 for SMPE
compared with NEB and NEBX respectively for 100 Monte
Carlo simulations. The black line represents y = x, i.e., when
SMPE performs equally good as NEB and NEBX. Note the
scaling of the x-axis of this figure.

A Appendix

Proof of Lemma 4.1

From Bayes’ rule it follows that

log p(z, s11; η̂
(k)) = log p(z|s11, η̂(k))+log p(s11; η̂

(k)) ,

with (neglecting constant terms)

log p(z|s11, η) ∝ −
1

2
log detΣe −

1

2
‖z −Wθs11‖

2
Σ

−1
e

log p(s11; η) ∝ −
1

2
log detλKβ −

1

2
sT11(λKβ)

−1s11 .

Now we have to take the expectation w.r.t. the posterior
p(s11|w̃2; η̂

(k)). Developing the second term in the first
equation above and recalling that

Ep(s11|w̃2; η̂(k))[s
T
11As11] = Tr

{

AŜ
(k)
11

}

,

the statement of the lemma readily follows.

Proof of Proposition 4.2

In (26), fix Σe to the value Σ̂
(k)
e (computed inserting

σ
2(k)
1 and σ

2(k)
2 ). We obtain the θ-dependent terms (A.1)

and (A.2) (after multiplying by a factor −2), where k1
and k2 contain terms independent of θ. Recalling the

definitions of Â(k) and b̂(k), (35) readily follows.

Now, let θ be fixed at the value θ̂(k+1). The function (26)
can be rewritten as (A.3) (after multiplying by a factor
−2). The results (36) follow by minimizing (A.3) with
respect to σ2

1 and σ2
2 . Differentiating w.r.t. σ2

1 and σ2
2

and calculating the zeros.

Proof of Proposition 5.1

Using Bayes’ rule we can decompose the complete like-
lihood as

log p(z, s11, f ; η) = log p(z|s11, f ; η)

+ log p(s11; η) + log p(f ; η) ,

and we will analyze each term in turn. First, note that

−2 log p(s11|η) = log detλsKβs
+ sT11(λsKβs

)−1s11
= log detλsKβs

+Tr
{

(λsKβs
)−1s11s

T
11

}

Replacing s11s
T
11 with its sample estimate yields the first

term in (79). Similarly,

−2 log p(f |η) = log detλfKβf
+Tr

{

(λfKβf
)−1ffT

}

.

Replacing ffT with its sample estimate yields the sec-
ond term in (79). Finally,

−2 log p(z|t, s11; η) = log detΣ + (z − ẑ)TΣ−1(z − ẑ) ,

(A.4)

with

ẑ :=









Rs

GθRs

GθRv









.

The first term of (A.4) is N times the sum of the loga-
rithms of the noise variances squared. The second term
of (A.4) decomposes into a sum of the (weighted) error
of each signal. Then, the first weighted error is given by

σ2
1 ‖w̃1 −Rs‖22 = ‖w̃1‖

2
2 − 2w̃T

1 Rs+Tr
{

RssTRT
}

.

Replacing s and ssT with their respective estimates gives
the third term in (79), with the corresponding noise vari-
ance term of (A.4) added. Similar calculations on the re-
maining two weighted errors in (A.4) gives the last two
terms in (79). This concludes the proof.
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(k)
11 = −

2

σ
2(k)
2

yTGθR1ŝ
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